RESUMO
(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.
Assuntos
Atractylodes , Modelos Animais de Doenças , Síndrome do Intestino Irritável , Canais de Cátion TRPV , Zimosan , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/induzido quimicamente , Canais de Cátion TRPV/metabolismo , Camundongos , Atractylodes/química , Masculino , Extratos Vegetais/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacosRESUMO
The anti-cancer effects of [6]-gingerol ([6]-GIN), the main active polyphenol of ginger (Zingiber officinale), were investigated in the human bladder cancer cell line 5637. [6]-GIN inhibited cell proliferation, increased subG1 phase ratios, and depolarized mitochondrial membrane potential. [6]-GIN-induced cell death was associated with the downregulation of Bcell lymphoma 2 (BCL2) and survivin and the upregulation of Bcl2associated X protein (Bax). [6]-GIN activated caspase3 and caspase-9 and regulated the activation of mitogen-activated protein kinases (MAPKs). Further, [6]-GIN also increased the intracellular reactive oxygen species (ROS) levels and TG100-115 or tranilast increased [6]-GINinduced cell death. These results suggest that [6]-GIN induced apoptosis in the bladder cancer cell line 5637 and therefore has the potential to be used in the development of new drugs for bladder cancer treatment.
Assuntos
Neoplasias da Bexiga Urinária , Zingiber officinale , Apoptose , Catecóis , Linhagem Celular Tumoral , Álcoois Graxos , Zingiber officinale/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Flos Magnoliae (the dried flower buds of Magnolia biondii Pamp, FM) is a known herbal traditional medicine used for the symptomatic relief of nasal congestion and rhinorrhea caused by rhinitis and sinusitis. Magnolol, a neolignan from the magnolia family, is a secondary metabolite known to have anti-allergic and anti-inflammatory effects. However, the underlying mechanisms and therapeutic effect of magnolol in the treatment of allergic rhinitis (AR) remain elusive. AIMS OF THE STUDY: Anoctamin 1 (ANO1), a calcium-activated anion channel, mediates mucus and electrolyte secretion in nasal airway epithelial cells, whereas calcium release-activated calcium channel protein 1 (ORAI1) participates in the activation of T-lymphocytes and mast cells. The aim of our study is to understand the mechanisms of action of magnolol against AR, i.e., whether it acts through the modulation of ANO1 and ORAI1 channels that are expressed in nasal epithelial cells and T-lymphocytes, respectively. MATERIALS AND METHODS: Whole-cell patch clamp was used to record the activity of ORAI1 and ANO1 ion channels in ORAI1 or ANO1 overexpressed HEK293T cells, while the Ussing chamber apparatus was used to measure electrolyte transport via the epithelium, in Calu-3 cells cultured in an air-liquid interface. Additionally, calcium imaging of Jurkat T-lymphocytes was used to assess changes in the intracellular calcium concentration. Magnolol toxicity was assessed using the CCK-8 assay, and its effect on T-lymphocyte proliferation was measured by labeling human primary T-lymphocytes with carboxyfluorescein succinimidyl ester. Finally, OVA-induced Balb/c mice were employed to evaluate the effect of magnolol on nasal symptoms, as well as cytokine and eosinophil infiltration in AR. RESULTS: Magnolol inhibits ORAI1 and ANO1 channels in a concentration-dependent manner. Magnolol (30 µM) inhibits anti-CD3 induced cellular proliferation and production of IL-2 via ORAI1 channels in T-lymphocytes. Further, ATP-induced electrolyte transport mediated by ANO1 channels is significantly inhibited by magnolol in IL-4 sensitized Calu-3 cells. Notably, 300 µM magnolol significantly attenuates cytokine and eosinophil infiltration, thus alleviating AR symptoms in mice OVA-induced AR. CONCLUSION: Magnolol may be a promising therapeutic agent for the treatment and prevention of AR.
Assuntos
Antialérgicos/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Magnolia/química , Rinite Alérgica/tratamento farmacológico , Animais , Anoctamina-1/antagonistas & inibidores , Antialérgicos/administração & dosagem , Antialérgicos/isolamento & purificação , Compostos de Bifenilo/administração & dosagem , Compostos de Bifenilo/isolamento & purificação , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Flores , Células HEK293 , Humanos , Lignanas/administração & dosagem , Lignanas/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Proteína ORAI1/antagonistas & inibidores , Ovalbumina , Técnicas de Patch-ClampRESUMO
4-Oxo-nonenal (4-ONE) is an endogenous lipid peroxidation product that is more reactive than 4-hydroxy-nonenal (4-HNE). We previously reported the arrhythmic potential of 4-HNE by suppression of cardiac human Ether-a-go-go Related Gene (hERG) K+ channels with prolonged action potential duration (APD) in cardiomyocytes. Here, we illustrate the higher arrhythmic risk of 4-ONE by modulating the cardiac hNaV1.5 channel currents (INaV). Although the peak amplitude of INaV was not significantly changed by 4-ONE up to 10 µM, the rate of INaV inactivation was slowed, and the late Na+ current (INaL) became larger by 10 µM 4-ONE. The chemical modification of specific residues in hNaV1.5 by 4-ONE was identified using MS-fingerprinting analysis. In addition to the changes in INaV, 4-ONE decreased the delayed rectifier K+ channel currents including the hERG current. The L-type Ca2+ channel current was decreased, whereas its inactivation was slowed by 4-ONE. The APD prolongation by 10 µM of 4-ONE was more prominent than that by 100 µM of 4-HNE. In the computational in silico cardiomyocyte simulation analysis, the changes of INaL by 4-ONE significantly exacerbated the risk of arrhythmia exhibited by the TdP marker, qNet. Our study suggests an arrhythmogenic effect of 4-ONE on cardiac ion channels, especially hNaV1.5.
RESUMO
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.
Assuntos
Anoctamina-1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dietilestilbestrol/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Anoctamina-1/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dietilestilbestrol/metabolismo , Humanos , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Transdução de SinaisRESUMO
Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 µM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 µM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.
RESUMO
Anoctamin-6 (ANO6) belongs to a family of calcium (Ca2+)-activated chloride channels (CaCCs), with three splicing variants (V1, V2, and V5) showing plasma membrane expression. Unlike other CaCCs, ANO6 requires a non-physiological intracellular free calcium concentration ([Ca2+]i > 1 µM) and several minutes for full activation under a whole-cell patch clamp. Therefore, its physiological role as an ion channel is uncertain and it is more commonly considered a Ca2+-dependent phospholipid scramblase. Here, we demonstrate that physiological temperature (37 °C) increases ANO6 Ca2+ sensitivity under a whole-cell patch clamp; V1 was activated by 1 µM [Ca2+]i, whereas V2 and V5 were activated by 300 nM [Ca2+]i. Increasing the temperature to 42 °C led to activation of all ANO6 variants by 100 nM [Ca2+]i. The delay time for activation of the three variants was significantly shortened at 37 °C. Notably, the temperature-dependent Ca2+-sensitisation of ANO6 became insignificant under inside-out patch clamp, suggesting critical roles of unknown cytosolic factors. Unlike channel activity, 27 °C but not 37 °C (physiological temperature) induced the scramblase activity of ANO6 at submicromolar [Ca2+]i (300 nM), irrespective of variant type. Our results reveal a physiological ion conducting property of ANO6 at 37 °C and suggest that ANO6 channel function acts separately from its scramblase activity.
Assuntos
Anoctaminas/metabolismo , Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Anoctaminas/genética , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Fosfolipases A2/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , TemperaturaRESUMO
Anoctamin 6 (ANO6/TMEM16F) is a recently identified membrane protein that has both phospholipid scramblase activity and anion channel function activated by relatively high [Ca2+]i. In addition to the low sensitivity to Ca2+, the activation of ANO6 Cl- conductance is very slow (>3-5â¯min to reach peak level at 10⯵M [Ca2+]i), with subsequent inactivation. In a whole-cell patch clamp recording of ANO6 current (IANO6,w-c), disruption of the actin cytoskeleton with cytochalasin-D (cytoD) significantly accelerated the activation kinetics, while actin filament-stabilizing agents (phalloidin and jasplakinolide) commonly inhibited IANO6,w-c. Inside-out patch clamp recording of ANO6 (IANO6,i-o) showed immediate activation by raising [Ca2+]i. We also found that intracellular ATP (3â¯mM MgATP in pipette solution) decelerated the activation of IANO6,w-c, and also prevented the inactivation of IANO6,w-c. However, the addition of cytoD still accelerated both activation and inactivation of IANO6,w-c. We conclude that the actin cytoskeleton and intracellular ATP play major roles in the Ca2+-dependent activation and inactivation of IANO6,w-c, respectively.
Assuntos
Citoesqueleto de Actina/metabolismo , Trifosfato de Adenosina/metabolismo , Anoctaminas/metabolismo , Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Células HEK293 , Humanos , Técnicas de Patch-ClampRESUMO
Polystyrene copolymers containing maleic anhydride or maleic acid functional groups with controlled architectures were prepared through nitroxide mediated polymerization and applied to BaTiO3 nanoparticles as polymeric surface modifiers. Effective surface modification effect of BaTiO3 nanoparticles with the copolymers were observed, as evidenced by TGA, SEM, EDX and FT-IR. Modified BaTiO3 nanoparticles exhibited improved dispersion in toluene, suggesting that the amphiphilic copolymers acted as dispersants. Through the addition of the surface modifier, the viscosity of the BaTiO3/epoxy pastes decreased and the dielectric constants of the resulting nanocomposite films increased. Molecular weight and number of functional groups of the copolymers were important factors to ascertain good processability and high dielectric constants of the composite.