Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 279(Pt 2): 135237, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218190

RESUMO

Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.

2.
Int J Biol Macromol ; 257(Pt 1): 128509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052285

RESUMO

Previous studies demonstrated that the non-thermal effects of pulsed electric fields can promote protein glycation below 40 °C, but it does not always enhance the emulsifying properties of proteins, such as in the bovine serum albumin/glucose model. Therefore, the aim of this study was to investigate the impact of non-thermal effects on the glucose glycation and emulsification properties of bovine serum albumin at 90 °C. The results of circular dichroism, surface hydrophobicity, and molecular dynamics simulations showed that the polarization effect increased the degree of glycation of bovine serum albumin-glucose conjugates from 12.82 % to 21.10 % by unfolding protein molecule, while the emulsifying stability index was increased from 79.17 to 100.73 compared with the control. Furthermore, the results of principal component analysis and Pearson correlation analysis indicated that the ionization effect and the free radicals generated by pulsed electric fields significantly (p < 0.05) inhibited browning and reduced free sulfhydryl content. This study demonstrated that pulsed electric fields combined with heating can prepare glycated proteins with good emulsifying properties in a short period of time and at temperatures lower than conventional heating while reducing energy consumption. This processing strategy has potential applications in improving the emulsifying performance of highly stable proteins.


Assuntos
Reação de Maillard , Soroalbumina Bovina , Temperatura , Glucose , Interações Hidrofóbicas e Hidrofílicas
3.
Int J Biol Macromol ; 247: 125716, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37419258

RESUMO

In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.


Assuntos
Quitosana , Curcumina , Óxido de Zinco , Hidrogéis , Carboximetilcelulose Sódica , Liberação Controlada de Fármacos , Microesferas , Portadores de Fármacos , Concentração de Íons de Hidrogênio
4.
Int J Biol Macromol ; 244: 125082, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37257538

RESUMO

Understanding molecular mechanisms during protein modification is critical for expanding the application of plant proteins. This study investigated the conformational change and molecular mechanism of pea protein isolate (PPI) under pulsed electric field (PEF)-assisted (-)-Epigallocatechin-Gallate (EGCG) modification. The flexibility of PPI was significantly enhanced after PEF treatment (10 kV/cm) with decrease (23.25 %) in α-helix and increase (117.25 %) in random coil. The binding constant and sites of PEF-treated PPI with EGCG were increased by 2.35 times and 10.00 % (308 K), respectively. Molecular docking verified that PEF-treated PPI had more binding sites with EGCG (from 4 to 10). The number of amino acid residues involved in hydrophobic interactions in PEF-treated PPI-EGCG increased from 5 to 13. PEF-treated PPI-EGCG showed a significantly increased antioxidant activity compared to non-PEF-treated group. This work revealed the molecular level of PEF-assisted EGCG modification of PPI, which will be significant for the application of PPI in food industry.


Assuntos
Proteínas de Ervilha , Simulação por Computador , Simulação de Acoplamento Molecular , Análise Espectral , Antioxidantes/farmacologia , Antioxidantes/química
5.
Food Chem ; 418: 135971, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36958183

RESUMO

In this study, corn porous starch (CPS) was firstly prepared using enzymatic hydrolysis, followed by pore formation enhancement using the treatment of a pulsed electric field (PEF). Subsequently, the PEF treated porous starch (CPS-PEF) was cross-linked with sodium trimetaphosphate (STMP) to investigate its structural and functional properties. The results showed PEF treatment increased the oil absorption of CPS by 26.92% and improved its specific surface area, total pore volume value, solubility and swelling power. After cross-linking of the CPS-PEF, C-O-P covalent bonds were formed between CPS-PEF molecules, resulting in a further increase in oil absorption and specific surface area properties. Moreover, the covalent bonds enhanced the intermolecular forces, resulting in increased thermal stability of the cross-linked porous starch (ScPS). The double modification resulted in significantly improved adsorption properties and better thermal stability of the ScPS, indicating that the double modification is an effective method for the preparation of porous starches.


Assuntos
Amido , Zea mays , Porosidade , Zea mays/química , Hidrólise , Amido/química
6.
Int J Biol Macromol ; 235: 123721, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36801303

RESUMO

The structure and thermal properties of pulsed electric field (PEF) assisted sodium hypochlorite oxidized starch were investigated. The carboxyl content of the oxidized starch was increased by 25 % when compared with the traditional oxidation method. Dents and cracks were evident on the surface of the PEF-pretreated starch. Compared with native starch, the peak gelatinization temperature (Tp) of PEF-assisted oxidized starch (POS) was reduced by 10.3 °C, while that of the oxidized starch without PEF treatment (NOS) was only reduced by 7.4 °C. In addition, PEF treatment further reduces the viscosity and improve the thermal stability of the starch slurry. Therefore, PEF treatment combined with hypochlorite oxidation is an effective method to prepare oxidized starch. PEF showed great potential in expanding starch modification, to promote a wider application of oxidized starch in the paper, the textile and the food industry.


Assuntos
Ácido Hipocloroso , Amido , Amido/química , Ácido Hipocloroso/química , Hipoclorito de Sódio , Temperatura , Oxirredução
7.
Food Chem ; 408: 135231, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563620

RESUMO

The structural and physicochemical properties changes of corn starch oxidized by sodium periodate under the assistance of pulsed electric fields (PEF) were studied. It was found that dialdehyde starch (DAS) particles produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control without PEF. The solubility of the DAS (12 kV/cm PEF- assisted oxidation) improved by 70.2% when compared to the native starch. Increment in the strength of the PEF, led to a decrease in the viscosity of the DAS. In addition, the aldehyde group content of the DAS produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control increased by 11.6% when compared with the traditional oxidation method. PEF is an effective method to promote oxidation reaction of starch.


Assuntos
Eletricidade , Amido , Amido/química , Oxirredução
8.
Front Nutr ; 9: 1053811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570142

RESUMO

Kaempferia elegans polysaccharide (KEP) was extracted using a high-voltage pulsed electric field-assisted hot water method. Its physicochemical properties, in vitro activity and hypoglycemic effect was investigated. Experiments were undertaken with diabetic mice models and the potential mechanism of KEP to improve blood glucose levels was unveiled through measurements of relevant indicators in the serum and liver of the mice. Results showed that KEP is mainly composed of glucose, rhamnose, arabinose, and galactose. It has certain DPPH and ABTS free radical scavenging ability and good α-glucosidase inhibitory ability, indicating that KEP has the potential to improve blood glucose levels in diabetes patients. The experimental results of KEP treatment on mice showed that KEP could control the continuous increase of fasting blood glucose levels. The potential mechanisms behind this blood glucose level control composes of (1) increasing the glucokinase and C peptide levels and decreasing Glucose-6-phosphatase content for improving key enzyme activity in the glucose metabolism pathway. This promotes the consumption of blood glucose during glycolysis, thereby inhibiting the production of endogenous glucose in gluconeogenesis pathway; (2) reducing triglyceride, total cholesterol, low density lipoprotein cholesterol, and increasing high density lipoprotein cholesterol content, for regulating blood lipid indicators to normal levels; and (3) by improving the activities of catalase, glutathione peroxidase, and antioxidant enzymes superoxide dismutase for further improving the antioxidant defense system in the body to reduce blood glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA