Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449079

RESUMO

Initial symptoms of neurodegenerative diseases are often defined by the loss of the most vulnerable neural populations specific to each disorder. In the early stages of Alzheimer's disease, vulnerable circuits in the temporal lobe exhibit diminished activity prior to overt degeneration. It remains unclear whether these functional changes contribute to regional vulnerability or are simply a consequence of pathology. We previously found that entorhinal neurons in the temporal cortex undergo cell death following transient suppression of electrical activity, suggesting a causal role for activity disruption in neurodegeneration. Here we demonstrate that electrical arrest of this circuit stimulates the injury-response transcription factor c-Jun. Entorhinal silencing induces transcriptional changes consistent with c-Jun activation that share characteristics of gene signatures in other neuronal populations vulnerable to Alzheimer's disease. Despite its established role in the neuronal injury response, inhibiting c-Jun failed to ameliorate entorhinal degeneration following activity disruption. Finally, we present preliminary evidence of integrated stress response activity that may serve as an alternative hypothesis to what drives entorhinal degeneration after silencing. Our data demonstrate that c-Jun is activated in response to neuronal silencing in the entorhinal cortex but is decoupled from subsequent neurodegeneration.

2.
Acta Neuropathol ; 147(1): 61, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526616

RESUMO

TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.


Assuntos
Proteínas de Membrana , Proteínas do Tecido Nervoso , Tauopatias , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Proteínas de Membrana/genética , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Paralisia/genética , Polimorfismo de Nucleotídeo Único , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/patologia
3.
J Neuroinflammation ; 21(1): 11, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178148

RESUMO

The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.


Assuntos
Doxiciclina , Microbioma Gastrointestinal , Camundongos , Animais , Doxiciclina/farmacologia , Camundongos Transgênicos , Lipopolissacarídeos , Tetraciclina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transativadores/genética , Inflamação , Transgenes
5.
Front Neurosci ; 17: 1275959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901434

RESUMO

The lysosomal protein TMEM106B was identified as a risk modifier of multiple dementias including frontotemporal dementia and Alzheimer's disease. The gene comes in two major haplotypes, one associated with disease risk, and by comparison, the other with resilience. Only one coding polymorphism distinguishes the two alleles, a threonine-to-serine substitution at residue 185 (186 in mouse), that is inherited in disequilibrium with multiple non-coding variants. Transcriptional studies suggest synaptic, neuronal, and cognitive preservation in human subjects with the protective haplotype, while murine in vitro studies reveal dramatic effects of TMEM106B deletion on neuronal development. Despite this foundation, the field has not yet resolved whether coding variant is biologically meaningful, and if so, whether it has any specific effect on neuronal phenotypes. Here we studied how loss of TMEM106B or expression of the lone coding variant in isolation affected transcriptional signatures in the mature brain and neuronal structure during development in primary neurons. Homozygous expression of the TMEM106B T186S variant in knock-in mice increased cortical expression of genes associated with excitatory synaptic function and axon outgrowth, and promoted neurite branching, dendritic spine density, and synaptic density in primary hippocampal neurons. In contrast, constitutive TMEM106B deletion affected transcriptional signatures of myelination without altering neuronal development in vitro. Our findings show that the T186S variant is functionally relevant and may contribute to disease resilience during neurodevelopment.

6.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993574

RESUMO

TMEM106B is a risk modifier for a growing list of age-associated dementias including Alzheimer’s and frontotemporal dementia, yet its function remains elusive. Two key questions that emerge from past work are whether the conservative T185S coding variant found in the minor haplotype contributes to protection, and whether the presence of TMEM106B is helpful or harmful in the context of disease. Here we address both issues while extending the testbed for study of TMEM106B from models of TDP to tauopathy. We show that TMEM106B deletion accelerates cognitive decline, hindlimb paralysis, neuropathology, and neurodegeneration. TMEM106B deletion also increases transcriptional overlap with human AD, making it a better model of disease than tau alone. In contrast, the coding variant protects against tau-associated cognitive decline, neurodegeneration, and paralysis without affecting tau pathology. Our findings show that the coding variant contributes to neuroprotection and suggest that TMEM106B is a critical safeguard against tau aggregation.

7.
Elife ; 112022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36468693

RESUMO

Neurodegenerative diseases are characterized by selective vulnerability of distinct cell populations; however, the cause for this specificity remains elusive. Here, we show that entorhinal cortex layer 2 (EC2) neurons are unusually vulnerable to prolonged neuronal inactivity compared with neighboring regions of the temporal lobe, and that reelin + stellate cells connecting EC with the hippocampus are preferentially susceptible within the EC2 population. We demonstrate that neuronal death after silencing can be elicited through multiple independent means of activity inhibition, and that preventing synaptic release, either alone or in combination with electrical shunting, is sufficient to elicit silencing-induced degeneration. Finally, we discovered that degeneration following synaptic silencing is governed by competition between active and inactive cells, which is a circuit refinement process traditionally thought to end early in postnatal life. Our data suggests that the developmental window for wholesale circuit plasticity may extend into adulthood for specific brain regions. We speculate that this sustained potential for remodeling by entorhinal neurons may support lifelong memory but renders them vulnerable to prolonged activity changes in disease.


Neurodegenerative conditions cause irreversible damage to the brain and have a devastating impact on quality of life. However, these diseases start gradually, meaning that the entire brain is not affected at once. For example, the initial signs of Alzheimer's disease appear only in specific areas. One of the first brain regions to degenerate in Alzheimer's is the entorhinal cortex. In healthy individuals, entorhinal neurons send electrical signals to the hippocampus, a part of the brain important for memory and learning. During Alzheimer's, hippocampal neurons also die off, leading to 'shrinkage' of this brain region and, ultimately, the memory problems that are a hallmark of the disease. Many neurons in the developing brain require electrical input from other cells to survive ­ in other words, if they do not belong to an 'active circuit', they are eliminated. This is crucial for the connection between the entorhinal cortex and the hippocampus, where the circuit's development and maintenance require carefully controlled electrical activity. Abnormal electrical activity is also an early sign of diseases like Alzheimer's, but how this relates to degeneration is still poorly understood. By investigating these questions, Zhao, Grunke, Wood et al. uncovered a potential relationship between electrical activity and degeneration in the adult brain, long after the circuit between the hippocampus and the entorhinal cortex had matured. Mice were genetically engineered so that their entorhinal cortex would carry a protein designed to silence electrical signaling. The communication between the entorhinal cortex and the hippocampus could therefore be shut off by activating the protein with an injected drug. Remarkably, within just a few days of silencing, cells from the entorhinal cortex started to die off. Zhao, Grunke, Wood et al. went on to show that different silencing methods yielded the same results ­ in other words, the degeneration of cells from the entorhinal cortex was not linked to a particular method. This vulnerability to electrical inactivity was also unique to the entorhinal cortex: when neighboring parts of the brain were silenced, the nerve cells in these areas did not die as readily. Interestingly, in one of their experiments, Zhao, Grunke, Wood et al. found that electrical activity of neighboring nerve cells participated in killing the silenced neurons, suggesting that nerve cells in these brain areas might compete to survive. Overall, this work highlights a direct link between electrical activity and nerve cell degeneration in a part of the brain severely affected by Alzheimer's. In the future, Zhao, Grunke, Wood et al. hope that these results will pave the way to a better understanding of the biological mechanisms underpinning such neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Neurônios/fisiologia , Hipocampo/metabolismo , Córtex Entorrinal
8.
J Emerg Manag ; 20(2): 111-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451048

RESUMO

Gun violence in places of worship (POW) has long been an issue and has been addressed repeatedly in the literature. Contextually, most of the research has been pertinent to relatively large POW, situated in an urban setting. However, rural churches have not been addressed, and they appear to have a far less defensive posture, mainly because of their remote location and the extended time required for first responders to arrive, which in turn requires a higher level of independent operation in terms of defense and medical response. Having retained an off-duty officer is a strong deterrent and provides the ability to handle any issues that may arise, including lower violence level events. If retaining an officer is not an option, having a well-trained volunteer armed team and a clear plan of action is vital to surviving such an event. Furthermore, due to the extended response and transport time, it is critical to have proper medical training, such as Stop the Bleed® and cardio-pulmonary resuscitation. This article's focus is not only on response but preparedness, which reinforces the response, as well as prevention and deterrence. An exhaustive best practices review has informed the solutions offered, supplemented by experience and recommendations of a highly experienced physical security expert and a police officer member of a Special Weapons and Tactics (SWAT) team.


Assuntos
Polícia , Violência , Humanos
9.
Mol Ther ; 29(7): 2294-2307, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647457

RESUMO

Numerous aggregation inhibitors have been developed with the goal of blocking or reversing toxic amyloid formation in vivo. Previous studies have used short peptide inhibitors targeting different amyloid ß (Aß) amyloidogenic regions to prevent aggregation. Despite the specificity that can be achieved by peptide inhibitors, translation of these strategies has been thwarted by two key obstacles: rapid proteolytic degradation in the bloodstream and poor transfer across the blood-brain barrier. To circumvent these problems, we have created a minigene to express full-length Aß variants in the mouse brain. We identify two variants, F20P and F19D/L34P, that display four key properties required for therapeutic use: neither peptide aggregates on its own, both inhibit aggregation of wild-type Aß in vitro, promote disassembly of pre-formed fibrils, and diminish toxicity of Aß oligomers. We used intraventricular injection of adeno-associated virus (AAV) to express each variant in APP/PS1 transgenic mice. Lifelong expression of F20P, but not F19D/L34P, diminished Aß levels, plaque burden, and plaque-associated neuroinflammation. Our findings suggest that AAV delivery of Aß variants may offer a novel therapeutic strategy for Alzheimer's disease. More broadly our work offers a framework for identifying and delivering peptide inhibitors tailored to other protein-misfolding diseases.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/antagonistas & inibidores , Encéfalo/metabolismo , Terapia Genética , Vetores Genéticos/administração & dosagem , Mutação , Placa Amiloide/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Dependovirus/genética , Feminino , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Placa Amiloide/genética , Placa Amiloide/metabolismo
10.
Ann Allergy Asthma Immunol ; 123(6): 558-563, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562939

RESUMO

OBJECTIVE: Omics, aka multi-omics, is an emerging area of research that is advancing the use of personalized medicine in clinical practice and is therefore relevant for the practicing allergist. DATA SOURCES: We performed a literature search of a selection of scientific findings in omics and allergy, including variants that may be important to allergy outcomes in the genome, transcriptome, metabolome, microbiome, epigenome, and exposome, among others. STUDY SELECTIONS: Basic science papers and review articles. RESULTS: The use of multi-omic data in clinical practice is changing how clinicians treat their patients whereby more personalized approaches are becoming standard in medical practice and has the potential to transform the treatment of allergies. CONCLUSION: Multi-omic data are relevant and will become increasingly important for the clinical allergist.


Assuntos
Biologia Computacional , Hipersensibilidade , Medicina de Precisão , Alergistas , Alergia e Imunologia , Exposição Ambiental , Humanos , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Hipersensibilidade/microbiologia , Hipersensibilidade/terapia
11.
Skelet Muscle ; 6: 31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713817

RESUMO

BACKGROUND: Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age- and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). METHODS: Chat-ChR2-EYFP (VAChTHyp) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1G93A), and Chat-IRES-Cre and tdTomato transgenic mice were used in this study. NMJs, muscle fibers, and α-motor neurons' somata and their axons were examined using a light microscope. Transcripts for select genes in muscles and spinal cords were assessed using real-time quantitative PCR. Motor function tests were carried out using an inverted wire mesh and a rotarod. Electrophysiological recordings were collected to examine miniature endplate potentials (MEPP) in muscles. RESULTS: We show that VAChT is elevated in the spinal cord and at NMJs of VAChTHyp mice. We also show that the amplitude of MEPPs is significantly higher in VAChTHyp muscles, indicating that more ACh is loaded into synaptic vesicles and released into the synaptic cleft at NMJs of VAChTHyp mice compared to control mice. While the development of NMJs was not affected in VAChTHyp mice, NMJs prematurely acquired age-related structural alterations in adult VAChTHyp mice. These structural changes at NMJs were accompanied by motor deficits in VAChTHyp mice. However, cellular features of muscle fibers and levels of molecules with critical functions at the NMJ and in muscle fibers were largely unchanged in VAChTHyp mice. In the SOD1G93A mouse model for ALS, increasing synaptic ACh accelerated degeneration of NMJs caused motor deficits and resulted in premature death specifically in male mice. CONCLUSIONS: The data presented in this manuscript demonstrate that increasing levels of ACh at the synaptic cleft promote degeneration of adult NMJs, contributing to age- and disease-related motor deficits. We thus propose that maintaining normal cholinergic signaling in muscles will slow degeneration of NMJs and attenuate loss of motor function caused by aging and neuromuscular diseases.


Assuntos
Acetilcolina/metabolismo , Envelhecimento , Esclerose Lateral Amiotrófica/fisiopatologia , Junção Neuromuscular/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Junção Neuromuscular/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Análise de Sobrevida , Proteínas Vesiculares de Transporte de Acetilcolina/fisiologia
12.
Brain Behav ; 4(5): 754-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25328850

RESUMO

BACKGROUND: As purported causal factors are identified for autism spectrum disorder (ASD), new assays are needed to better phenotype animal models designed to explore these factors. With recent evidence suggesting that deficits in social motivation are at the core of ASD behavior, the development of quantitative measures of social motivation is particularly important. The goal of our study was to develop and validate novel assays to quantitatively measure social motivation in mice. METHODS: In order to test the validity of our paradigms, we compared the BTBR strain, with documented social deficits, to the prosocial C57BL/6J strain. Two novel conditioning paradigms were developed that allowed the test mouse to control access to a social partner. In the social motivation task, the test mice lever pressed for a social reward. The reward contingency was set on a progressive ratio of reinforcement and the number of lever presses achieved in the final trial of a testing session (breakpoint) was used as an index of social motivation. In the valence comparison task, motivation for a food reward was compared to a social reward. We also explored activity, social affiliation, and preference for social novelty through a series of tasks using an ANY-Maze video-tracking system in an open-field arena. RESULTS: BTBR mice had significantly lower breakpoints in the social motivation paradigm than C57BL/6J mice. However, the valence comparison task revealed that BTBR mice also made significantly fewer lever presses for a food reward. CONCLUSIONS: The results of the conditioning paradigms suggest that the BTBR strain has an overall deficit in motivated behavior. Furthermore, the results of the open-field observations may suggest that social differences in the BTBR strain are anxiety induced.


Assuntos
Transtorno Autístico/psicologia , Motivação , Comportamento Social , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Alimentos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA