Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Protein Expr Purif ; 217: 106442, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336119

RESUMO

A novel tandem affinity tag is presented that enables the use of cation exchange resins for initial affinity purification, followed by an additional column step for enhanced purity and affinity tag self-removal. In this method, the highly charged heparin-binding tag binds strongly and selectively to either a strong or weak cation exchange resin based on electrostatic interactions, effectively acting as an initial affinity tag. Combining the heparin-binding tag (HB-tag) with the self-removing iCapTag™ provides a means for removing both tags in a subsequent self-cleaving step. The result is a convenient platform for the purification of diverse tagless proteins with a range of isoelectric points and molecular weights. In this work, we demonstrate a dual column process in which the tagged protein of interest is first captured from an E. coli cell lysate using a cation exchange column via a fused heparin-binding affinity tag. The partially purified protein is then diluted and loaded onto an iCapTag™ split-intein column, washed, and then incubated overnight to release the tagless target protein from the bound tag. Case studies are provided for enhanced green fluorescent protein (eGFP), beta galactosidase (ßgal), maltose binding protein (MBP) and beta lactamase (ßlac), where overall purity and host cell DNA clearance is provided. Overall, the proposed dual column process is shown to be a scalable platform technology capable of accessing both the high dynamic binding capacity of ion exchange resins and the high selectivity of affinity tags for the purification of recombinant proteins.


Assuntos
Escherichia coli , Heparina , Proteínas Recombinantes de Fusão/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Cromatografia de Afinidade/métodos , Heparina/metabolismo
2.
Front Microbiol ; 14: 1305848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029209

RESUMO

Protein splicing is a posttranslational process in which an intein segment excises itself from two flanking peptides, referred to as exteins. In the native context, protein splicing results in two separate protein products coupled to the activation of the intein-containing host protein. Inteins are generally described as either full-length inteins, mini-inteins or split inteins, which are differentiated by their genetic structure and features. Inteins can also be divided into three classes based on their splicing mechanisms, which differ in the location of conserved residues that mediate the splicing pathway. Although inteins were once thought to be selfish genetic elements, recent evidence suggests that inteins may confer a genetic advantage to their host cells through posttranslational regulation of their host proteins. Finally, the ability of modified inteins to splice and cleave their fused exteins has enabled many new applications in protein science and synthetic biology. In this review, we briefly cover the mechanisms of protein splicing, evidence for some inteins as environmental sensors, and intein-based applications in protein engineering.

3.
Curr Protoc ; 3(10): e901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37882966

RESUMO

In this work, we describe a novel self-cleaving affinity tag technology based on a highly modified split-intein cleaving element. In this system, which has recently been commercialized by Protein Capture Science, LLC under the name iCapTagTM , the N-terminal segment of an engineered split intein is covalently immobilized onto a capture resin, while the smaller C-terminal intein segment is fused to the N-terminus of the desired target protein. The tagged target can then be expressed in an appropriate expression system, without concern for premature intein cleaving. During the purification, strong binding between the intein segments effectively captures the tagged target onto the capture resin while simultaneously generating a cleaving-competent intein complex. After unwanted impurities are washed from the resin, cleavage of the target protein is initiated by a shift of the buffer pH from 8.5 to 6.2. As a result, the highly purified tagless target protein is released from the column in the elution step. Alternately, the resin beads can be added directly to cell culture broth or lysate, allowing capture, purification and cleavage of the tagless target protein using a column-free format. These methods result in highly pure tagless target protein in a single step, and can thereby accelerate characterization and functional studies. In this work we demonstrate the single step purification of streptokinase, a fibrinolytic agent, and an engineered recombinant human hemoglobin 1.1 (rHb1.1). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression of high-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Basic Protocol 2: Purification of high-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform Alternate Protocol 1: Expression of low-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Alternate Protocol 2: Purification of low-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform.


Assuntos
Inteínas , Nostoc , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Processamento de Proteína , Nostoc/genética , Nostoc/química
4.
Life (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895354

RESUMO

Thyroid receptor signaling controls major physiological processes and disrupted signaling can cause severe disorders that negatively impact human life. Consequently, methods to detect thyroid receptor ligands are of great toxicologic and pharmacologic importance. Previously, we reported thyroid receptor ligand detection with cell-free protein synthesis of a chimeric fusion protein composed of the human thyroid receptor beta (hTRß) receptor activator and a ß-lactamase reporter. Here, we report a 60% reduction in sensing cost by reengineering the chimeric fusion protein biosensor to include a reporter system composed of either the full-length beta galactosidase (ß-gal), the alpha fragment of ß-gal (ß-gal-α), or a split alpha fragment of the ß-gal (split ß-gal-α). These biosensor constructs are deployed using E. coli XL1-Blue cell extract to (1) avoid the ß-gal background activity abundant in BL21 cell extract and (2) facilitate ß-gal complementation reporter activity to detect human thyroid receptor ligands. These results constitute a promising platform for high throughput screening and potentially the portable detection of human thyroid receptor ligands.

5.
Methods Mol Biol ; 2699: 237-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647002

RESUMO

Glycoprotein therapeutics are currently used by large patient populations and generate significant revenue for the biopharmaceutical industry. These therapeutic proteins are currently purified at industrial scale using individualized processes involving multiple chromatographic steps. In the absence of a viable affinity platform method, the required chromatographic steps are difficult to develop and inevitably lead to significant yield losses. Further, during preclinical development, there is a need for reliable platform technologies capable of performing high-throughput screening for biologic candidates. Although affinity tags can provide a solution to some of these challenges, they require specific affinity resins, and the tag itself can interfere with the target protein characteristics. Fusion protein systems consisting of elastin-like polypeptide (ELP) and self-cleaving split inteins such as Npu DnaE can serve as potential non-chromatographic platform technologies for the single-step purification of tagless glycoproteins expressed in mammalian cells. In this chapter, we demonstrate the use of this technology to obtain highly purified anti-ErbB2 ML39 single-chain variable fragment (scFv) expressed from Expi293F suspension cells.


Assuntos
Inteínas , Anticorpos de Cadeia Única , Animais , Humanos , Elastina/genética , Cromatografia , Ensaios de Triagem em Larga Escala , Mamíferos
6.
Front Mol Biosci ; 9: 857566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463948

RESUMO

Self-cleaving affinity tags, based on engineered intein protein domains, have been touted as a universal single step purification platform for tagless non-mAb proteins. These approaches provide all of the power and flexibility of tag-based affinity methods, but deliver a tagless target protein suitable for clinical applications without complex process development. This combination of features might accelerate and de-risk biopharmaceutical development by bridging early discovery to full-scale manufacturing under a single platform. Despite this profound promise, intein-based technologies have yet to reach their full potential. This review examines the evolution of intein-based purification methods in the light of several significant intein patents filed over the last 3 decades. Illustrated with actual key figures from each of the relevant patents, key advances are described with a focus on applications in basic research and biopharmaceutical production. Suggestions for extending intein-based purification systems to emerging therapies and non-protein applications are presented as concluding remarks.

7.
Biotechnol J ; 17(2): e2100152, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761537

RESUMO

Nuclear receptors (NRs) influence nearly every system of the body and our lives depend on correct NR signaling. Thus, a key environmental and pharmaceutical quest is to identify and detect chemicals which interact with nuclear hormone receptors, including endocrine disrupting chemicals (EDCs), therapeutic receptor modulators, and natural hormones. Previously reported biosensors of nuclear hormone receptor ligands facilitated rapid detection of NR ligands using cell-free protein synthesis (CFPS). In this work, the advantages of CFPS are further leveraged and combined with kinetic analysis, autoradiography, and western blot to elucidate the molecular mechanism of this biosensor. Additionally, mathematical simulations of enzyme kinetics are used to optimize the biosensor assay, ultimately lengthening its readable window by five-fold and improving sensor signal strength by two-fold. This approach enabled the creation of an on-demand thyroid hormone biosensor with an observable color-change readout. This mathematical and experimental approach provides insight for engineering rapid and field-deployable CFPS biosensors and promises to improve methods for detecting natural hormones, therapeutic receptor modulators, and EDCs.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos , Hormônios , Cinética , Ligantes
8.
Curr Pharm Biotechnol ; 22(7): 878-891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32838715

RESUMO

In recent years, extensive attention has been given to the generation of new classes of ligand- specific binding proteins to supplement monoclonal antibodies. A combination of protein engineering and display technologies has been used to manipulate non-human antibodies for humanization and stabilization purposes or even the generation of new binding proteins. Engineered protein scaffolds can now be directed against therapeutic targets to treat cancer and immunological disorders. Although very few of these scaffolds have successfully passed clinical trials, their remarkable properties such as robust folding, high solubility, and small size motivate their employment as a tool for biology and applied science studies. Here, we have focused on the generation of new non-Ig binding proteins and single domain antibody manipulation, with a glimpse of their applications.


Assuntos
Proteínas de Transporte/síntese química , Proteínas de Transporte/genética , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Humanos , Biblioteca de Peptídeos , Ligação Proteica/fisiologia , Engenharia de Proteínas/tendências , Estrutura Secundária de Proteína
9.
Bioprocess Biosyst Eng ; 43(11): 1931-1941, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32447513

RESUMO

A purification system was constructed with the N-segment of the Npu DnaE split intein as an affinity ligand immobilized onto an epoxy-activated medium and the C-segment used as the cleavable tag fusing target protein. The affinity properties of C-tagged proteins adsorbed on IN affinity chromatography medium were studied with GFP as a model target protein. The saturated adsorption capacity and dynamic adsorption capacity reached 51.9-21.0 mg mL-1, respectively. With this system, two model proteins, GFP and alcohol dehydrogenase (ADH), has been successfully taglessly purified with regulation of Zn2+ and DTT. The yield, purification factor and purity of purified tagless GFP reached 39, 11.7 and 97%, respectively; while these values for purified tagless ADH were 38.2, 6.8 and 91%, respectively. These results showed that the system for Npu DnaE split intein-mediated affinity adsorption and in situ cleavage is a potential platform for recombinant protein production.


Assuntos
Biotecnologia/métodos , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Proteínas Recombinantes/isolamento & purificação , Álcool Desidrogenase/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Ditiotreitol/química , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/química , Inteínas , Ligantes , Domínios Proteicos , Processamento de Proteína , Proteínas Recombinantes/química , Zinco/química
11.
Toxicol Sci ; 174(1): 133-146, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879758

RESUMO

Chemical warfare nerve agents (CWNAs) present a global threat to both military and civilian populations. The acute toxicity of CWNAs stems from their ability to effectively inhibit acetylcholinesterase (AChE). This inhibition can lead to uncontrolled cholinergic cellular signaling, resulting in cholinergic crisis and, ultimately, death. Although the current FDA-approved standard of care is moderately effective when administered early, development of novel treatment strategies is necessary. Butyrylcholinesterase (BChE) is an enzyme which displays a high degree of structural homology to AChE. Unlike AChE, the roles of BChE are uncertain and possibilities are still being explored. However, BChE appears to primarily serve as a bioscavenger of toxic esters due to its ability to accommodate a wide variety of substrates within its active site. Like AChE, BChE is also readily inhibited by CWNAs. Due to its high affinity for binding CWNAs, and that null-BChE yields no apparent health effects, exogenous BChE has been explored as a candidate therapeutic for CWNA intoxication. Despite years of research, minimal strides have been made to develop a catalytic bioscavenger. Furthermore, BChE is only in early clinical trials as a stoichiometric bioscavenger of CWNAs, and large quantities must be administered to treat CWNA toxicity. Here, we describe previously unidentified mutations to residues within and adjacent to the acyl binding pocket (positions 282-285 were mutagenized from YGTP to NHML) of BChE that confer catalytic degradation of the CWNA, sarin. These mutations, along with corresponding future efforts, may finally lead to a novel therapeutic to combat CWNA intoxication.


Assuntos
Butirilcolinesterase/metabolismo , Substâncias para a Guerra Química/metabolismo , Inibidores da Colinesterase/metabolismo , Sarina/metabolismo , Sítios de Ligação , Butirilcolinesterase/genética , Catálise , Células HEK293 , Humanos , Mutação , Ligação Proteica , Especificidade por Substrato
12.
Appl Ergon ; 70: 182-193, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29866310

RESUMO

Computer programs are a ubiquitous part of modern society, yet little is known about the psychological processes that underlie reviewing code. We applied the heuristic-systematic model (HSM) to investigate the influence of computer code comments on perceptions of code trustworthiness. The study explored the influence of validity, placement, and style of comments in code on trustworthiness perceptions and time spent on code. Results indicated valid comments led to higher trust assessments and more time spent on the code. Properly placed comments led to lower trust assessments and had a marginal effect on time spent on code; however, the effect was no longer significant after controlling for effects of the source code. Low style comments led to marginally higher trustworthiness assessments, but high style comments led to longer time spent on the code. Several interactions were also found. Our findings suggest the relationship between code comments and perceptions of code trustworthiness is not as straightforward as previously thought. Additionally, the current paper extends the HSM to the programming literature.


Assuntos
Heurística , Software/normas , Confiança/psicologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Percepção , Controle de Qualidade , Fatores de Tempo , Adulto Jovem
13.
Toxicol Appl Pharmacol ; 345: 19-25, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29499249

RESUMO

Many diseases and disorders are linked to exposure to endocrine disrupting chemicals (EDCs) that mimic the function of natural estrogen hormones. Here we present a Rapid Adaptable Portable In-vitro Detection biosensor platform (RAPID) for detecting chemicals that interact with the human estrogen receptor ß (hERß). This biosensor consists of an allosteric fusion protein, which is expressed using cell-free protein synthesis technology and is directly assayed by a colorimetric response. The resultant biosensor successfully detected known EDCs of hERß (BPA, E2, and DPN) at similar or better detection range than an analogous cell-based biosensor, but in a fraction of time. We also engineered cell-free protein synthesis reactions with RNAse inhibitors to increase production yields in the presence of human blood and urine. The RAPID biosensor successfully detects EDCs in these human samples in the presence of RNAse inhibitors. Engineered cell-free protein synthesis facilitates the use of protein biosensors in complex sample matrices without cumbersome protein purification.


Assuntos
Técnicas Biossensoriais/métodos , Sistema Livre de Células/metabolismo , Disruptores Endócrinos/sangue , Disruptores Endócrinos/urina , Biossíntese de Proteínas/fisiologia , Sistema Livre de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Disruptores Endócrinos/farmacologia , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Humanos , Biossíntese de Proteínas/efeitos dos fármacos
14.
Curr Protoc Protein Sci ; 91: 5.29.1-5.29.23, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29516483

RESUMO

In this work, we describe a novel self-cleaving tag technology based on a highly modified split-intein cleaving element. In this system, the N-terminal segment of an engineered split intein is expressed in E. coli and covalently immobilized onto a capture resin, while the smaller C-terminal intein segment is fused to the N-terminus of the desired target protein. The tagged target can then be expressed in an appropriate expression system, without concern for premature intein cleaving. During the purification, strong association between the intein segments effectively captures the tagged target onto the capture resin while simultaneously generating a cleaving-competent intein complex. Once the complex is purified by washing the column, intein-mediated cleavage and release of the tagless target is induced with a simple shift in buffer pH from 8.5 to 6.2. The result is a convenient and effective method for the purification of traceless and tagless target proteins, which can be used in characterization and functional studies. © 2018 by John Wiley & Sons, Inc.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Inteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/genética
15.
Methods Mol Biol ; 1737: 373-391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484604

RESUMO

RNA biology and RNA engineering are subjects of growing interest due to recent advances in our understanding of the diverse cellular functions of RNAs, including their roles as genetic regulators. The noncoding small RNAs (sRNAs) of bacteria are a fundamental basis of regulatory control that can regulate gene expression via antisense base-pairing to one or more target mRNAs. The sRNAs can be customized to generate a range of mRNA translation rates and stabilities. The sRNAs can be applied as a platform for metabolic engineering, to control expression of genes of interest by following relatively straightforward design rules (Kushwaha et al., ACS Synth Biol 5:795-809, 2016). However, the ab initio design of functional sRNAs to precise specifications of gene control is not yet possible. Consequently, there is a need for tools to rapidly profile uncharacterized sRNAs in vivo, to screen sRNAs against "new/novel" targets, and (in the case of metabolic engineering) to develop engineered sRNAs for regulatory function against multiple desired mRNA targets. To address this unmet need, we previously constructed a modular genetic system for assaying sRNA activity in vivo against specifiable mRNA sequences, using microtiter plate assays for high-throughput productivity. This sRNA design platform consists of three modular plasmids: one plasmid contains an inducible sRNA and the RNA chaperone Hfq; the second contains an inducible fluorescent reporter protein and a LacY mutant transporter protein for inducer molecules; and the third plasmid contains a second inducible fluorescent reporter protein. The second reporter gene makes it possible to screen for sRNA regulators that have activity against multiple mRNAs. We describe the protocol for engineering sRNAs with novel regulatory activity using this system. This sRNA prototyping regimen could also be employed for validating predicted mRNA targets of uncharacterized, naturally occurring sRNAs or for testing hypotheses about the predicted roles of genes, including essential genes, in cellular metabolism and other processes, by using customized antisense sRNAs to knock down or tune down gene expression.


Assuntos
Proteínas de Escherichia coli/metabolismo , Redes Reguladoras de Genes , Genes Reporter , Engenharia Genética/métodos , Ensaios de Triagem em Larga Escala/métodos , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescência , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/genética , Plasmídeos , RNA Bacteriano/química , RNA Bacteriano/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Homologia de Sequência
16.
Biotechnol Bioeng ; 115(5): 1253-1264, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29384203

RESUMO

Cell-Free Protein Synthesis (CFPS) offers many advantages for the production of recombinant therapeutic proteins using the CHO cell-free system. However, many complex proteins are still difficult to express using this method. To investigate the current bottlenecks in cell-free glycoprotein production, we chose erythropoietin (40% glycosylated), an essential endogenous hormone which stimulates the development of red blood cells. Here, we report the production of recombinant erythropoietin (EPO) using CHO cell-free system. Using this method, EPO was expressed and purified with a twofold increase in yield when the cell-free reaction was supplemented with CHO microsomes. The protein was purified to near homogeneity using an ion-metal affinity column. We were able to analyze the expressed and purified products (glycosylated cell-free EPO runs at 25-28 kDa, and unglycosylated protein runs at 20 kDa on an SDS-PAGE), identifying the presence of glycan moieties by PNGase shift assay. The purified protein was predicted to have ∼2,300 IU in vitro activity. Additionally, we tested the presence and absence of sugars on the cell-free EPO using a lectin-based assay system. The results obtained in this study indicate that microsomes augmented in vitro production of the glycoprotein is useful for the rapid production of single doses of a therapeutic glycoprotein drug and to rapidly screen glycoprotein constructs in the development of these types of drugs. CFPS is useful for implementing a lectin-based method for rapid screening and detection of glycan moieties, which is a critical quality attribute in the industrial production of therapeutic glycoproteins.


Assuntos
Biotecnologia/métodos , Sistema Livre de Células , Eritropoetina/metabolismo , Microssomos/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Células CHO , Cromatografia de Afinidade , Cricetulus , Eletroforese em Gel de Poliacrilamida , Eritropoetina/química , Eritropoetina/genética , Eritropoetina/isolamento & purificação , Expressão Gênica , Glicosilação , Humanos , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
17.
Biotechnol Bioeng ; 115(1): 92-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843001

RESUMO

The use of cell-free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell-free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell-free system using instrumented mini-bioreactors for highly reproducible protein production. We achieved recombinant protein production (∼600 µg/ml of tGFP and 500 µg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell-free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag-free self-cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose-level production of therapeutic proteins at the point-of-care.


Assuntos
Sistema Livre de Células , Misturas Complexas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Estreptoquinase/biossíntese , Estreptoquinase/isolamento & purificação , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas Recombinantes/genética , Estreptoquinase/genética
18.
Polymers (Basel) ; 10(5)2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30966502

RESUMO

Conventional column chromatography processes to purify recombinant proteins are associated with high production costs and slow volumetric throughput at both laboratory and large scale. Non-chromatographic purifications based on selective aggregating tags have the potential to reduce costs with acceptable protein yields. A significant drawback, however, is that current proteolytic approaches for post-purification tag removal after are expensive and non-scalable. To address this problem, we have developed two non-chromatographic purification strategies that use either the elastin-like polypeptide (ELP) tag or the ß-roll tag (BRT17) in combination with an engineered split intein for tag removal. The use of the split intein eliminates premature cleavage during expression and provides controlled cleavage under mild conditions after purification. These self-cleaving aggregating tags were used to efficiently purify ß-lactamase (ß-lac), super-folder green fluorescent protein (sfGFP), streptokinase (SK) and maltose binding protein (MBP), resulting in increased yields compared to previous ELP and BRT17-based methods. Observed yields of purified targets for both systems typically ranged from approximately 200 to 300 micrograms per milliliter of cell culture, while overall recoveries ranged from 10 to 85 percent and were highly dependent on the target protein.

19.
Nat Biomed Eng ; 2(9): 675-686, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-31015674

RESUMO

Manufacturing technologies for biologics rely on large, centralized, good-manufacturing-practice (GMP) production facilities and on a cumbersome product-distribution network. Here, we report the development of an automated and portable medicines-on-demand device that enables consistent, small-scale GMP manufacturing of therapeutic-grade biologics on a timescale of hours. The device couples the in vitro translation of target proteins from ribosomal DNA, using extracts from reconstituted lyophilized Chinese hamster ovary cells, with the continuous purification of the proteins. We used the device to reproducibly manufacture His-tagged granulocyte-colony stimulating factor, erythropoietin, glucose-binding protein and diphtheria toxoid DT5. Medicines-on-demand technology may enable the rapid manufacturing of biologics at the point of care.


Assuntos
Produtos Biológicos/química , Proteínas/química , Animais , Células CHO , Linhagem Celular , Cricetulus , DNA Ribossômico/química , Eritropoetina/química , Fator Estimulador de Colônias de Granulócitos/química , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
20.
Anal Chem ; 89(6): 3395-3401, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28238262

RESUMO

Here we introduce a Rapid Adaptable Portable In vitro Detection biosensor platform (RAPID) for detecting ligands that interact with nuclear hormone receptors (NHRs). The RAPID platform can be adapted for field use, allowing rapid evaluation of endocrine disrupting chemicals (EDCs) presence or absence in environmental samples, and can also be applied for drug screening. The biosensor is based on an engineered, allosterically activated fusion protein, which contains the ligand binding domain from a target NHR (human thyroid receptor ß in this work). In vitro expression of this protein using cell-free protein synthesis (CFPS) technology in the presence of an EDC leads to activation of a reporter enzyme, reported through a straightforward colorimetric assay output. In this work, we demonstrate the potential of this biosensor platform to be used in a portable "just-add-sample" format for near real-time detection. We also demonstrate the robust nature of the cell-free protein synthesis component in the presence of a variety of environmental and human samples, including sewage, blood, and urine. The presented RAPID biosensor platform is significantly faster and less labor intensive than commonly available technologies, making it a promising tool for detecting environmental EDC contamination and screening potential NHR-targeted pharmaceuticals.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/análise , Proteínas Recombinantes de Fusão/síntese química , Receptores beta dos Hormônios Tireóideos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Proteínas Recombinantes de Fusão/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA