Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36884218

RESUMO

STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.


Assuntos
Asma , Hipersensibilidade Alimentar , Humanos , Fator de Transcrição STAT6 , Mutação com Ganho de Função , Imunoglobulina E/genética
2.
Sci Transl Med ; 14(634): eabm4869, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235341

RESUMO

Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Although pathogenic variants in RAS/mitogen activated protein kinase (MAPK) signaling pathway components have been documented in some patients with CCLA, the genetic etiology of the disorder remains uncharacterized in most cases. Here, we identified biallelic pathogenic variants in MDFIC, encoding the MyoD family inhibitor domain containing protein, in seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. The lymphatic vasculature of homozygous Mdfic mutant mice was profoundly mispatterned and exhibited major defects in lymphatic vessel valve development. Mechanistically, we determined that MDFIC controls collective cell migration, an important early event during the formation of lymphatic vessel valves, by regulating integrin ß1 activation and the interaction between lymphatic endothelial cells and their surrounding extracellular matrix. Our work identifies MDFIC variants underlying human lymphatic disease and reveals a crucial, previously unrecognized role for MDFIC in the lymphatic vasculature. Ultimately, understanding the genetic and mechanistic basis of CCLA will facilitate the development and implementation of new therapeutic approaches to effectively treat this complex disease.


Assuntos
Quilotórax , Vasos Linfáticos , Linfedema , Fatores de Regulação Miogênica , Animais , Quilotórax/genética , Quilotórax/metabolismo , Células Endoteliais , Feminino , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/metabolismo , Vasos Linfáticos/patologia , Linfedema/genética , Linfedema/metabolismo , Camundongos , Fatores de Regulação Miogênica/genética , Gravidez
3.
Nat Med ; 23(10): 1203-1214, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28920956

RESUMO

Mutations in MECP2 cause Rett syndrome (RTT), an X-linked neurological disorder characterized by regressive loss of neurodevelopmental milestones and acquired psychomotor deficits. However, the cellular heterogeneity of the brain impedes an understanding of how MECP2 mutations contribute to RTT. Here we developed a Cre-inducible method for cell-type-specific biotin tagging of MeCP2 in mice. Combining this approach with an allelic series of knock-in mice carrying frequent RTT-associated mutations (encoding T158M and R106W) enabled the selective profiling of RTT-associated nuclear transcriptomes in excitatory and inhibitory cortical neurons. We found that most gene-expression changes were largely specific to each RTT-associated mutation and cell type. Lowly expressed cell-type-enriched genes were preferentially disrupted by MeCP2 mutations, with upregulated and downregulated genes reflecting distinct functional categories. Subcellular RNA analysis in MeCP2-mutant neurons further revealed reductions in the nascent transcription of long genes and uncovered widespread post-transcriptional compensation at the cellular level. Finally, we overcame X-linked cellular mosaicism in female RTT models and identified distinct gene-expression changes between neighboring wild-type and mutant neurons, providing contextual insights into RTT etiology that support personalized therapeutic interventions.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/metabolismo , Síndrome de Rett/genética , Transcriptoma/genética , Alelos , Animais , Biotina , Biotinilação , Córtex Cerebral/citologia , Feminino , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Genótipo , Camundongos , Mosaicismo , Mutação , Mutação de Sentido Incorreto , Fenótipo
4.
Front Genet ; 7: 93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303433

RESUMO

DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein 'readers' of methylation, which includes the methyl-CpG binding domain (MBD) family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD) complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver, and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here, we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.

5.
Epigenomics ; 8(4): 455-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27066839

RESUMO

AIM: DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. EXPERIMENTAL PROCEDURES: We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. RESULTS: Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. CONCLUSION: Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.


Assuntos
Comportamento Animal , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Aminas Biogênicas/análise , Peso Corporal , Encéfalo/metabolismo , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Masculino , Aprendizagem em Labirinto , Proteína 2 de Ligação a Metil-CpG/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Análise Espaço-Temporal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Cell Biol ; 32(12): 2289-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22473998

RESUMO

Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPß to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Proteína beta Intensificadora de Ligação a CCAAT , Proteínas de Ligação a DNA , PPAR gama/genética , Proto-Oncogenes , Fatores de Transcrição , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , PPAR gama/metabolismo , Ligação Proteica , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
DNA Cell Biol ; 29(9): 487-98, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20491580

RESUMO

Temporal coordination of meiosis with spermatid morphogenesis is crucial for successful generation of mature sperm cells. We identified a recessive male sterile Drosophila melanogaster mutant, mitoshell, in which events of spermatid morphogenesis are initiated too early, before meiotic onset. Premature mitochondrial aggregation and fusion lead to an aberrant mitochondrial shell around premeiotic nuclei. Despite successful meiotic karyokinesis, improper mitochondrial localization in mitoshell testes is associated with defective astral central spindles and a lack of contractile rings, leading to meiotic cytokinesis failure. We mapped and cloned the mitoshell gene and found that it encodes a novel protein with a bromodomain-related region. It is conserved in some insect lineages. Bromodomains typically bind to histone acetyl-lysine residues and therefore are often associated with chromatin. The Mitoshell bromodomain-related region is predicted to have an alpha helical structure similar to that of bromodomains, but not all the crucial residues in the ligand-binding loops are conserved. We speculate that Mitoshell may participate in transcriptional regulation of spermatogenesis-specific genes, though perhaps with different ligand specificity compared to traditional bromodomains.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Citocinese , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Meiose , Espermatogênese , Sequência de Aminoácidos , Animais , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , Sequência Conservada , Citocinese/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Genes de Insetos/genética , Infertilidade Masculina/genética , Proteínas de Insetos/genética , Masculino , Meiose/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA