Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 35(7-8): 232-242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37212263

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the IDS gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Vírus da Raiva , Camundongos , Animais , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Ácido Idurônico , Iduronato Sulfatase/genética , Glicoproteínas/genética , Peptídeos
2.
Front Mol Biosci ; 9: 965089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172050

RESUMO

Mucopolysaccharide diseases are a group of paediatric inherited lysosomal storage diseases that are caused by enzyme deficiencies, leading to a build-up of glycosaminoglycans (GAGs) throughout the body. Patients have severely shortened lifespans with a wide range of symptoms including inflammation, bone and joint, cardiac, respiratory and neurological disease. Current treatment approaches for MPS disorders revolve around two main strategies. Enzyme replacement therapy (ERT) is efficacious in treating somatic symptoms but its effect is limited for neurological functions. Haematopoietic stem cell transplant (HSCT) has the potential to cross the BBB through monocyte trafficking, however delivered enzyme doses limit its use almost exclusively to MPSI Hurler. Gene therapy is an emerging therapeutic strategy for the treatment of MPS disease. In this review, we will discuss the various vectors that are being utilised for gene therapy in MPS as well as some of the most recent gene-editing approaches undergoing pre-clinical and clinical development.

3.
Hum Gene Ther Methods ; 30(2): 44-52, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30963787

RESUMO

Mutations in the human BEST1 gene are responsible for a number of distinct retinal disorders known as bestrophinopathies, for which there are no current treatments. The protein product, bestrophin-1, is expressed in the retinal pigment epithelium (RPE) where it localizes to the basolateral membrane and acts as a Ca2+-activated chloride channel. Recent studies have shown successful BEST1-mediated gene transfer to the RPE, indicating human clinical trials of BEST1 gene therapy may be on the horizon. A critical aspect of such trials is the ability to assess the efficacy of vector prior to patient administration. Here, an assay is presented that enables the quantitative assessment of AAV-mediated BEST1 chloride conductance as a measure of vector efficacy. Expression of BEST1 following transduction of HEK293 cells with AAV.BEST1 vectors was confirmed by liquid chromatography, Western blot, and immunocytochemistry. Whole-cell patch-clamp showed increased chloride conductance in BEST1-transduced cells compared to sham-transduced and untransduced controls. Exogenous chloride current correlated to BEST1 expression level, with an enhanced AAV.BEST1.WPRE vector providing higher expression levels of BEST1 and increases in chloride conductance. This study presents in vitro electrophysical quantification of bestrophin-1 following AAV-mediated gene transfer, providing vital functional data on an AAV gene therapy product that will support a future application for regulatory approval.


Assuntos
Bestrofinas/fisiologia , Parvovirinae/genética , Bestrofinas/genética , Dependovirus , Vetores Genéticos , Células HEK293 , Humanos , Transdução Genética
4.
ACS Chem Neurosci ; 10(1): 18-20, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30136572

RESUMO

Neurological lysosomal storage diseases are rare, inherited conditions resulting mainly from lysosomal enzyme deficiencies. Current treatments, such as enzyme replacement therapy and hematopoietic stem cell transplantation, fail to effectively treat neurological disease due to insufficient brain delivery of the missing enzyme. Ex vivo gene therapy approaches to overexpress the missing enzyme in hematopoietic stem cells prior to transplant are an emerging technology that has the potential to offer a viable therapy for patients with these debilitating diseases.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças do Sistema Nervoso/terapia , Animais , Encéfalo/fisiologia , Técnicas de Transferência de Genes/tendências , Terapia Genética/tendências , Transplante de Células-Tronco Hematopoéticas/tendências , Células-Tronco Hematopoéticas/fisiologia , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças do Sistema Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA