Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Acta Biomater ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39097123

RESUMO

Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.

2.
BMC Pregnancy Childbirth ; 24(1): 506, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060974

RESUMO

BACKGROUND: Breastfeeding self-efficacy has been identified as an important influence on breastfeeding outcomes. Among new parent couples, partners are uniquely positioned to be sources of support for developing breastfeeding self-efficacy, yet few breastfeeding programs have attempted to involve partners directly. The purpose of this study was to test the impact of a novel program, Happy, Healthy, Loved, on breastfeeding self-efficacy and maternal mood through emphasizing partner support and actively addressing postpartum-specific stress management in a tailored text message delivery program. METHODS: A randomized trial was conducted in which primiparous mother-partner dyads intending to exclusively breastfeed were recruited at midwestern hospitals 2-3 days after delivery. The clinical trial was pre-registered at clinicaltrials.gov (#NCT04578925, registration date 7/24/2020). Couples were randomized to receive intervention or an attentional control. Couples randomized to the intervention group then completed a brief interactive educational tablet program together (Happy, Healthy, Loved), followed by 6 weeks of tailored text messages providing reminders, coping strategies, and motivational milestones to improve breastfeeding self-efficacy. Participants in the control group received usual care followed by 6 weeks of attentional control text messages about infant development. Surveys were delivered at baseline, 6 weeks, and 6 months postpartum to both mother and partner to assess breastfeeding self-efficacy, mood, and social support (n = 62 couples). RESULTS: Outcomes of ANCOVA with baseline self-efficacy as a covariate showed a significant effect of intervention on 6 months breastfeeding self-efficacy when compared to control group. No other significant differences were found at 6 weeks or 6 months postpartum in breastfeeding self-efficacy, depressive or anxious symptoms. CONCLUSIONS: Results of the present investigation suggest that a text-based dyad intervention improved breastfeeding self-efficacy at 6 months, but not 6 weeks, postpartum, indicating that text-based mother-partner interventions are a promising direction to continue exploring in postpartum health research. TRIAL REGISTRATION: Clinicaltrials.gov #NCT04578925.


Assuntos
Afeto , Aleitamento Materno , Autoeficácia , Envio de Mensagens de Texto , Humanos , Aleitamento Materno/psicologia , Feminino , Adulto , Masculino , Mães/psicologia , Período Pós-Parto/psicologia , Apoio Social , Adulto Jovem
3.
Artigo em Inglês | MEDLINE | ID: mdl-38503504

RESUMO

Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.


Assuntos
Diferenciação Celular , Bainha de Mielina , Oligodendroglia , Oligodendroglia/fisiologia , Oligodendroglia/citologia , Humanos , Animais , Bainha de Mielina/fisiologia , Bainha de Mielina/metabolismo , Transdução de Sinais , Sistema Nervoso Central/fisiologia , Axônios/fisiologia , Axônios/metabolismo
4.
Neurotrauma Rep ; 4(1): 433-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435356

RESUMO

Myelin loss and oligodendrocyte death are well documented in patients with traumatic brain injury (TBI), as well as in experimental animal models after moderate-to-severe TBI. In comparison, mild TBI (mTBI) does not necessarily result in myelin loss or oligodendrocyte death, but causes structural alterations in the myelin. To gain more insight into the impact of mTBI on oligodendrocyte lineage in the adult brain, we subjected mice to mild lateral fluid percussion injury (mFPI) and characterized the early impact (1 and 3 days post-injury) on oligodendrocytes in the corpus callosum using multiple oligodendrocyte lineage markers (platelet-derived growth factor receptor [PDGFR]-α, glutathione S-transferase [GST]-π, CC1, breast carcinoma-amplified sequence 1 [BCAS1], myelin basic protein [MBP], myelin-associated glycoprotein [MAG], proteolipid protein [PLP], and FluoroMyelin™). Two regions of the corpus callosum in relation to the impact site were analyzed: areas near (focal) and anterior (distal) to the impact site. mFPI did not result in oligodendrocyte death in either the focal or distal corpus callosum, nor impact on oligodendrocyte precursors (PDGFR-α+) and GST-π+ oligodendrocyte numbers. In the focal but not distal corpus callosum, mFPI caused a decrease in CC1+ as well as BCAS1+ actively myelinating oligodendrocytes and reduced FluoroMyelin intensity without altering myelin protein expression (MBP, PLP, and MAG). Disruption in node-paranode organization and loss of Nav1.6+ nodes were observed in both the focal and distal regions, even in areas without obvious axonal damage. Altogether, our study shows regional differences in mature and myelinating oligodendrocyte in response to mFPI. Further, mFPI elicits a widespread impact on node-paranode organization that affects regions both close to and remotely located from the site of injury.

5.
Endocr Relat Cancer ; 30(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490874

RESUMO

Despite decades of research presenting insulin-like growth factor-1 receptor (IGF1R) as an attractive target for cancer therapy, IGF1R inhibitors ultimately failed in clinical trials. This was surprising due to the known cancer-promoting functions of IGF1R, including stimulation of cell invasion, proliferation, and survival. Discourse in the literature has acknowledged that a lack of patient stratification may have impacted the success of IGF1R-inhibitor trials. This argument alludes to the possibility that IGF1R function may be contingent on tumor type and cellular composition. Looking into the known roles of IGF1R, it becomes clear that this receptor interacts with a multitude of different proteins and even has tumor-suppressing functions. IGF1R is implicated in both cell-cell and cell-surface adhesion dynamics, and the effects of either IGF1R downregulation or pharmacological inhibition on cellular adhesion remain poorly understood. In turn, adhesion receptors modulate IGF1R signaling. In addition, our understanding of IGF1R function in tumor-associated immune and stromal cells is lacking, which could contribute to the overwhelming failure of IGF1R inhibitors in the clinic. In this review, we re-investigate clinical trial data to make connections between the failure of these drugs in human cancer patients and the understudied facets of IGF1R function. We describe lesser-known and potentially tumor-suppressive functions of IGF1R that include promoting cell-cell adhesion through E-cadherin, augmenting a pro-inflammatory macrophage phenotype, and stimulating B cells to produce immunoglobulins. We also highlight the important role of adhesion receptors in regulating IGF1R function, and we use this information to infer stratification criteria for selecting patients that might benefit from IGF1R inhibitors.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias , Receptor IGF Tipo 1 , Humanos , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Insulin-Like I/metabolismo , Integrinas , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
6.
BMC Pregnancy Childbirth ; 23(1): 209, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973695

RESUMO

BACKGROUND: While the majority of research on postpartum depressive and anxious symptoms has focused on mothers, a growing body of research suggests a need to understand the role of the partner's health and relationship quality as predictors of postpartum maternal depression, while also better understanding correlates of partner or paternal depression in the postpartum period. The purpose of the current study is to evaluate mother and partner stress, anxiety, mood, infant care support, and relationship quality as predictors of perinatal depressive and anxious symptoms in first time mothers and partners during the postpartum hospital stay. METHODS: First time parent couples (n = 116) completed a survey during the two-day postpartum stay in a Midwest hospital. Depressive (EPDS) and anxiety symptoms (DASS-21-Anxiety) were assessed in both mothers and partners. Hierarchical linear regression was used to evaluate relationship satisfaction, partner infant care support, stress, and co-parent mood as predictors of mood in mothers and partners separately. RESULTS: Stress was a predictor of anxiety and depression symptoms in both mothers and partners. Additionally, co-parent anxiety significantly predicted anxiety in both mothers and partners. Maternal relationship satisfaction was a predictor of the partner's depressive symptoms, and maternal perceptions of partner infant support predicted maternal depressive symptoms. CONCLUSIONS: Together, these results suggest that stress, relationship satisfaction, and co-parent mood are related to depressive and anxious symptoms in mothers and partner, underscoring the need to continue exploring mother and partner mental health in a dyadic framework.


Assuntos
Ansiedade , Depressão Pós-Parto , Depressão , Feminino , Humanos , Lactente , Masculino , Gravidez , Ansiedade/epidemiologia , Depressão/epidemiologia , Depressão/psicologia , Depressão Pós-Parto/diagnóstico , Depressão Pós-Parto/epidemiologia , Depressão Pós-Parto/psicologia , Pai/psicologia , Mães/psicologia , Período Pós-Parto/psicologia
7.
Crit Care Nurse ; 43(1): 52-58, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720278

RESUMO

BACKGROUND: Cardiothoracic surgery patients have an increased risk for aspiration and may require enteral access for nutrition. LOCAL PROBLEM: In a cardiothoracic intensive care unit, feeding start times were delayed because of scheduling conflicts with support services. An electromagnetic device (Cortrak 2 Enteral Access System, Avanos Medical) was introduced to allow advanced practice providers (nurse practitioners and physician assistants) to independently establish postpyloric access and reduce dependence on ancillary services. METHODS: A quality improvement study was performed. Pre- and postimplementation data included order time, service arrival, tube placement time, tube positioning, and feeding start times for 207 placements. Pre- and postimplementation surveys were conducted to evaluate advanced practice provider satisfaction with enteral tube placement practices. RESULTS: Feeding start time for initial placement decreased by 35.5% (15.6 hours to 10 hours); for subsequent placement, by 55.2% (15.5 hours to 7.0 hours). Assistance by support services decreased by 80.4% (before implementation, 100 of 100 placements [100%]; after implementation, 21 of 107 placements [19.6%]; P < .001; ϕ = 0.815). Overall, advanced practice provider satisfaction increased. Most participants said that using the electromagnetic device was faster, nutrition was delivered sooner, and implementation was a valuable practice change. CONCLUSIONS: Using an electromagnetic device decreased feeding start times, reduced the need for support services, and increased advanced practice provider satisfaction with small-bowel feeding tube placement practices.


Assuntos
Nutrição Enteral , Intubação Gastrointestinal , Humanos , Nutrição Enteral/efeitos adversos , Intubação Gastrointestinal/efeitos adversos , Intestino Delgado , Unidades de Terapia Intensiva , Fenômenos Eletromagnéticos
8.
J Neurosci ; 43(4): 540-558, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460463

RESUMO

In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/fl mice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.SIGNIFICANCE STATEMENT mTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.


Assuntos
Células Precursoras de Oligodendrócitos , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular/fisiologia , Sistema Nervoso Central/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Knockout , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Front Oncol ; 12: 990398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568144

RESUMO

Introduction: The acquisition of a metastatic phenotype is the critical event that determines patient survival from breast cancer. Several receptor tyrosine kinases have functions both in promoting and inhibiting metastasis in breast tumors. Although the insulin-like growth factor 1 receptor (IGF1R) has been considered a target for inhibition in breast cancer, low levels of IGF1R expression are associated with worse overall patient survival. Methods: To determine how reduced IGF1R impacts tumor phenotype in human breast cancers, we used weighted gene co-expression network analysis (WGCNA) of Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) patient data to identify gene modules associated with low IGF1R expression. We then compared these modules to single cell gene expression analyses and phenotypes of mouse mammary tumors with reduced IGF1R signaling or expression in a tumor model of triple negative breast cancer. Results: WGCNA from METABRIC data revealed gene modules specific to cell cycle, adhesion, and immune cell signaling that were inversely correlated with IGF1R expression in human breast cancers. Integration of human patient data with single cell sequencing data from mouse tumors revealed similar pathways necessary for promoting metastasis in basal-like mammary tumors with reduced signaling or expression of IGF1R. Functional analyses revealed the basis for the enhanced metastatic phenotype including alterations in E- and P-cadherins. Discussion: Human breast and mouse mammary tumors with reduced IGF1R are associated with upregulation of several pathways necessary for promoting metastasis supporting the conclusion that IGF1R normally helps maintain a metastasis suppressive tumor microenvironment. We further found that reduced IGF1R signaling in tumor epithelial cells dysregulates cadherin expression resulting in reduced cell adhesion.

10.
STAR Protoc ; 3(3): 101655, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36092821

RESUMO

This protocol describes isolation and live-cell metabolic analysis of O4+ oligodendroglia from brain and spinal cord of postnatal mice. We have optimized existing protocols for O4+ isolation from neonatal brain and expanded the protocol to include isolation of highly viable oligodendroglia from spinal cords of postnatal mice up to 18 days of age. Isolated oligodendroglia can be used in multiple downstream analyses, and here we describe an optimized real-time metabolic assay using Agilent Seahorse Analyzer to measure mitochondrial respiration. For complete details on the use and execution of this protocol, please refer to Khandker et al. (2022).


Assuntos
Oligodendroglia , Medula Espinal , Animais , Encéfalo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Oligodendroglia/metabolismo , Consumo de Oxigênio , Medula Espinal/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 911079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784559

RESUMO

Historically, the body of literature surrounding the insulin-like growth factor type 1 receptor (IGF1R) has described a largely pro-tumorigenic role in breast cancer cells and in several transgenic or xenograft mouse models of breast cancer. Interestingly, however, more recent evidence has emerged that suggests an additional, previously undescribed, tumor and metastasis suppressive function for IGF1R in both human breast tumors and mammary oncogenesis in mice. These seemingly conflicting reports can be reconciled when considering what is currently known about IGF1R function in the context of tissue development and cancer as it relates to cellular growth, proliferation, and differentiation. In this mini review, we will summarize the currently existing data with a particular focus on mouse models that have been developed to study IGF1R function in mammary development, tumorigenesis, and metastasis in vivo and propose hypotheses for how both the tumor-promoting and tumor-suppressing schools of thought regarding IGF1R in these histological contexts are compatible.


Assuntos
Neoplasias da Mama , Transformação Celular Neoplásica , Animais , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Receptor IGF Tipo 1
12.
Stem Cell Reports ; 17(6): 1411-1427, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35523180

RESUMO

The insulin receptor (INSR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. INSR signaling promotes neurogenesis in Drosophila; however, a specific role for the INSR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the Insr gene in adult mouse NSCs reduces subventricular zone NSCs by ∼70% accompanied by a corresponding increase in progenitors. Insr deletion also produced hyposmia caused by aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis and hippocampal-dependent behaviors were unperturbed. Highly aggressive proneural and mesenchymal glioblastomas had high INSR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of INSR:IGF type 1 receptor. Moreover, INSR knockdown inhibited GBM tumorsphere growth. Altogether, these data demonstrate that the INSR is essential for a subset of normal NSCs, as well as for brain tumor stem cell self-renewal.


Assuntos
Células-Tronco Adultas , Ventrículos Laterais/metabolismo , Células-Tronco Neurais , Receptor de Insulina/metabolismo , Somatomedinas , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Ventrículos Laterais/citologia , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Somatomedinas/metabolismo
13.
Cell Rep ; 38(9): 110423, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235799

RESUMO

Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain.


Assuntos
Células Precursoras de Oligodendrócitos , Encéfalo/metabolismo , Diferenciação Celular/genética , Colesterol , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Curr Opin Pharmacol ; 63: 102193, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245799

RESUMO

Despite evidence for prominent metabolic dysfunction within multiple sclerosis (MS) lesions, the mechanisms controlling metabolic shifts in oligodendroglia are poorly understood. The cuprizone model of demyelination and remyelination is a valuable tool for assessing metabolic insult during oligodendrocyte death and myelin degradation, closely resembling the distal oligodendrogliopathy seen in Pattern III MS lesions. In this review we discuss how metabolic processes in oligodendrocytes are disrupted in both MS and the cuprizone model, as well as the evidence for mechanistic target of rapamycin (mTOR) signaling as a key regulator of oligodendroglial metabolic function and efficient remyelination.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Animais , Cuprizona/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Brain Commun ; 4(1): fcac025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224490

RESUMO

The p70 ribosomal S6 kinases (p70 ribosomal S6 kinase 1 and p70 ribosomal S6 kinase 2) are downstream targets of the mechanistic target of rapamycin signalling pathway. p70 ribosomal S6 kinase 1 specifically has demonstrated functions in regulating cell size in Drosophila and in insulin-sensitive cell populations in mammals. Prior studies demonstrated that the mechanistic target of the rapamycin pathway promotes oligodendrocyte differentiation and developmental myelination; however, how the immediate downstream targets of mechanistic target of rapamycin regulate these processes has not been elucidated. Here, we tested the hypothesis that p70 ribosomal S6 kinase 1 regulates oligodendrocyte differentiation during developmental myelination and remyelination processes in the CNS. We demonstrate that p70 ribosomal S6 kinase activity peaks in oligodendrocyte lineage cells at the time when they transition to myelinating oligodendrocytes during developmental myelination in the mouse spinal cord. We further show p70 ribosomal S6 kinase activity in differentiating oligodendrocytes in acute demyelinating lesions induced by lysophosphatidylcholine injection or by experimental autoimmune encephalomyelitis in mice. In demyelinated lesions, the expression of the p70 ribosomal S6 kinase target, phosphorylated S6 ribosomal protein, was transient and highest in maturing oligodendrocytes. Interestingly, we also identified p70 ribosomal S6 kinase activity in oligodendrocyte lineage cells in active multiple sclerosis lesions. Consistent with its predicted function in promoting oligodendrocyte differentiation, we demonstrate that specifically inhibiting p70 ribosomal S6 kinase 1 in cultured oligodendrocyte precursor cells significantly impairs cell lineage progression and expression of myelin basic protein. Finally, we used zebrafish to show in vivo that inhibiting p70 ribosomal S6 kinase 1 function in oligodendroglial cells reduces their differentiation and the number of myelin internodes produced. These data reveal an essential function of p70 ribosomal S6 kinase 1 in promoting oligodendrocyte differentiation during development and remyelination across multiple species.

16.
J Neurosci ; 41(40): 8321-8337, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34417330

RESUMO

In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.


Assuntos
Encéfalo/metabolismo , Cuprizona/toxicidade , Células Precursoras de Oligodendrócitos/metabolismo , Remielinização/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Quelantes/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Remielinização/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
17.
J Neurosci ; 41(9): 1864-1877, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33478987

RESUMO

The actin cytoskeleton is crucial for oligodendrocyte differentiation and myelination. Here we show that p21-activated kinase 1 (PAK1), a well-known actin regulator, promotes oligodendrocyte morphologic change and myelin production in the CNS. A combination of in vitro and in vivo models demonstrated that PAK1 is expressed throughout the oligodendrocyte lineage with highest expression in differentiated oligodendrocytes. Inhibiting PAK1 early in oligodendrocyte development decreased oligodendrocyte morphologic complexity and altered F-actin spreading at the tips of oligodendrocyte progenitor cell processes. Constitutively activating AKT in oligodendrocytes in male and female mice, which leads to excessive myelin wrapping, increased PAK1 expression, suggesting an impact of PAK1 during active myelin wrapping. Furthermore, constitutively activating PAK1 in oligodendrocytes in zebrafish led to an increase in myelin internode length while inhibiting PAK1 during active myelination decreased internode length. As myelin parameters influence conduction velocity, these data suggest that PAK1 may influence communication within the CNS. These data support a model in which PAK1 is a positive regulator of CNS myelination.SIGNIFICANCE STATEMENT Myelin is a critical component of the CNS that provides metabolic support to neurons and also facilitates communication between cells in the CNS. Recent data demonstrate that actin dynamics drives myelin wrapping, but how actin is regulated during myelin wrapping is unknown. The authors investigate the role of the cytoskeletal modulator PAK1 during differentiation and myelination by oligodendrocytes, the myelinating cells of the CNS. They demonstrate that PAK1 promotes oligodendrocyte differentiation and myelination by modulating the cytoskeleton and thereby internode length, thus playing a critical role in the function of the CNS.


Assuntos
Bainha de Mielina/metabolismo , Neurogênese/fisiologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
18.
Cytopathology ; 32(3): 304-311, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33463817

RESUMO

COVID-19 has extraordinarily impacted every facet of the health care facilities' operations. Various strategies and policies were implemented promptly to preserve resources, not only to provide medical care to the expected massive numbers of COVID-19 patients, but also to mitigate the contagion spread at the workplace to ensure safety of healthcare workers. All routine, non-essential medical services and procedures were ramped down and workers deemed non-essential were directed to work remotely from home to reduce the number of people at hospital premises and preserve much needed personal protective equipment that were in short supply at the outset of the pandemic. The laboratories did not remain unscathed and were under immense pressure to maintain workplace safety while being operational and provide best patient care with limited resources. In this paper, we share our experience and challenges that we faced in a cytopathology laboratory at a major academic centre in New York, USA during the peak of infection.


Assuntos
COVID-19/epidemiologia , COVID-19/patologia , Hospitais de Ensino , Laboratórios Hospitalares , Pandemias , SARS-CoV-2 , Humanos , New York/epidemiologia , Patologia Clínica
19.
Disabil Health J ; 14(2): 100987, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32888877

RESUMO

BACKGROUND: Musculoskeletal traumas are on the rise in the United States; however, limited studies are available to help trauma providers assess and treat concerns beyond the physical impact. Little is understood about the psychological, social, and spiritual factors that protect patients from adverse effects after a physical trauma or their experiences with each factor afterward. OBJECTIVE: This systematic review was conducted to investigate and review advancements in research related to risk and resiliency factors experienced by survivors of traumatic musculoskeletal injuries. The use of biopsychosocial-spiritual (BPS-S) framework and resiliency theory guided the analysis. METHODS: Researchers reviewed 1003 articles, but only seven met the search criteria. Due to the complexity and uniqueness of traumatic brain injuries, studies on that target population were excluded. RESULTS: Of the seven articles reviewed, three identified psychological protective factors that protect against negative health outcomes; three identified negative psychological, social, or spiritual outcomes; and none investigated social or spiritual health. CONCLUSIONS: There are significant gaps in the literature surrounding risk and resiliency factors related to the BPS-S health of musculoskeletal injury survivors.


Assuntos
Lesões Encefálicas Traumáticas , Pessoas com Deficiência , Necessidades e Demandas de Serviços de Saúde , Humanos , Sobreviventes , Estados Unidos
20.
ASN Neuro ; 12: 1759091420971916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33228381

RESUMO

The ERK1/2 signaling pathway promotes myelin wrapping during development and remyelination, and sustained ERK1/2 activation in the oligodendrocyte (OL) lineage results in hypermyelination of the CNS. We therefore hypothesized that increased ERK1/2 signaling in the OL lineage would 1) protect against immune-mediated demyelination due to increased baseline myelin thickness and/or 2) promote enhanced remyelination and thus functional recovery after experimental autoimmune encephalomyelitis (EAE) induction. Cnp-Cre;Mek1DD-eGFP/+ mice that express a constitutively active form of MEK1 (the upstream activator of ERK1/2) in the OL lineage, exhibited a significant decrease in EAE clinical severity compared to controls. However, experiments using tamoxifen-inducible Plp-CreERT;Mek1DD-eGFP/+ or Pdgfrα-CreERT;Mek1DD-eGFP mice revealed this was not solely due to a protective or reparative effect resulting from MEK1DD expression specifically in the OL lineage. Because EAE is an immune-mediated disease, we examined Cnp-Cre;Mek1DD-eGFP/+ splenic immune cells for recombination. Surprisingly, GFP+ recombined CD19+ B-cells, CD11b+ monocytes, and CD3+ T-cells were noted when Cre expression was driven by the Cnp promoter. While ERK1/2 signaling in monocytes and T-cells is associated with proinflammatory activation, fewer studies have examined ERK1/2 signaling in B-cell populations. After in vitro stimulation, MEK1DD-expressing B-cells exhibited a 3-fold increase in CD138+ plasmablasts and a 5-fold increase in CD5+CD1dhi B-cells compared to controls. Stimulated MEK1DD-expressing B-cells also exhibited an upregulation of IL-10, known to suppress the initiation of EAE when produced by CD5+CD1dhi regulatory B-cells. Taken together, our data support the conclusion that sustained ERK1/2 activation in B-cells suppresses immune-mediated demyelination via increasing activation of regulatory B10 cells.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/biossíntese , Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Sistema de Sinalização das MAP Quinases/fisiologia , Regiões Promotoras Genéticas/fisiologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/imunologia , Animais , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA