Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 36(10): 943-954, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34210535

RESUMO

As a specialised branch of archaeology requiring specific field and laboratory methodologies, the contributions of archaeobotany have often been overlooked by the ecological research community. Developments in the fields of botany, chemistry, and ancient DNA analyses have greatly increased the potential for archaeobotany to contribute to topical questions relating to the Anthropocene and landscape transformations. We review the role of archaeobotany in identifying and describing past arable land use. Analytical techniques are illustrated with examples at both local and regional scales, demonstrating how archaeobotany can provide unique details of the wide array of past subsistence and land-use strategies. These data and their potential should be better recognised as important information that could underpin models seeking to evaluate or predict the effects of socioenvironmental interactions.


Assuntos
Arqueologia , Botânica , Agricultura , Humanos , Plantas
2.
Proc Natl Acad Sci U S A ; 117(16): 8989-9000, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32238559

RESUMO

The European continent was subject to two major migrations of peoples during the Holocene: the northwestward movement of Anatolian farmer populations during the Neolithic and the westward movement of Yamnaya steppe peoples during the Bronze Age. These movements changed the genetic composition of the continent's inhabitants. The Holocene was also characterized by major changes in vegetation composition, which altered the environment occupied by the original hunter-gatherer populations. We aim to test to what extent vegetation change through time is associated with changes in population composition as a consequence of these migrations, or with changes in climate. Using ancient DNA in combination with geostatistical techniques, we produce detailed maps of ancient population movements, which allow us to visualize how these migrations unfolded through time and space. We find that the spread of Neolithic farmer ancestry had a two-pronged wavefront, in agreement with similar findings on the cultural spread of farming from radiocarbon-dated archaeological sites. This movement, however, did not have a strong association with changes in the vegetational landscape. In contrast, the Yamnaya migration speed was at least twice as fast and coincided with a reduction in the amount of broad-leaf forest and an increase in the amount of pasture and natural grasslands in the continent. We demonstrate the utility of integrating ancient genomes with archaeometric datasets in a spatiotemporal statistical framework, which we foresee will enable future studies of ancient populations' movements, and their putative effects on local fauna and flora.


Assuntos
Arqueologia/métodos , Genoma Humano , Migração Humana/história , Modelos Genéticos , Análise Espaço-Temporal , Agricultura/história , Distribuição Animal , DNA Antigo/análise , Conjuntos de Dados como Assunto , Europa (Continente) , Fazendeiros , Estudos de Viabilidade , Florestas , Geografia , Pradaria , História Antiga , Humanos , Dispersão Vegetal , Datação Radiométrica
3.
Glob Chang Biol ; 25(9): 2915-2930, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298814

RESUMO

Climate warming and human landscape transformation during the Holocene resulted in environmental changes for wild animals. The last remnants of the European Pleistocene megafauna that survived into the Holocene were particularly vulnerable to changes in habitat. To track the response of habitat use and foraging of large herbivores to natural and anthropogenic changes in environmental conditions during the Holocene, we investigated carbon (δ13 C) and nitrogen (δ15 N) stable isotope composition in bone collagen of moose (Alces alces), European bison (Bison bonasus) and aurochs (Bos primigenius) in Central and Eastern Europe. We found strong variations in isotope compositions in the studied species throughout the Holocene and diverse responses to changing environmental conditions. All three species showed significant changes in their δ13 C values reflecting a shift of foraging habitats from more open in the Early and pre-Neolithic Holocene to more forest during the Neolithic and Late Holocene. This shift was strongest in European bison, suggesting higher plasticity, more limited in moose, and the least in aurochs. Significant increases of δ15 N values in European bison and moose are evidence of a diet change towards more grazing, but may also reflect increased nitrogen in soils following deglaciation and global temperature increases. Among the factors explaining the observed isotope variations were time (age of samples), longitude and elevation in European bison, and time, longitude and forest cover in aurochs. None of the analysed factors explained isotope variations in moose. Our results demonstrate the strong influence of natural (forest expansion) and anthropogenic (deforestation and human pressure) changes on the foraging ecology of large herbivores, with forests playing a major role as a refugial habitat since the Neolithic, particularly for European bison and aurochs. We propose that high flexibility in foraging strategy was the key for survival of large herbivores in the changing environmental conditions of the Holocene.


Assuntos
Bison , Herbivoria , Animais , Bovinos , Ecossistema , Europa (Continente) , Europa Oriental
4.
Glob Chang Biol ; 21(3): 1197-212, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25345850

RESUMO

Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 bp to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 bp through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 bp onwards. From 2200 bp land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 bp. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.


Assuntos
Agricultura , Monitoramento Ambiental/métodos , Florestas , Pólen/classificação , Ecossistema , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA