Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Microb Ecol ; 87(1): 64, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691215

RESUMO

Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.


Assuntos
Bactérias , Culicidae , Microbiota , Wolbachia , Ruanda , Animais , Culicidae/microbiologia , Wolbachia/genética , Wolbachia/isolamento & purificação , Wolbachia/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Mosquitos Vetores/microbiologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Serratia/genética , Serratia/isolamento & purificação , Serratia/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
Commun Biol ; 6(1): 1261, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087051

RESUMO

The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.


Assuntos
Anuros , Microbiota , Animais , Pele
3.
PLoS One ; 18(9): e0291540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37725594

RESUMO

The use of museum specimens for research in microbial evolutionary ecology remains an under-utilized investigative dimension with important potential. Despite this potential, there remain barriers in methodology and analysis to the wide-spread adoption of museum specimens for such studies. Here, we hypothesized that there would be significant differences in taxonomic prediction and related diversity among sample type (museum or fresh) and sequencing strategy (medium-depth shotgun metagenomic or 16S rRNA gene). We found dramatically higher predicted diversity from shotgun metagenomics when compared to 16S rRNA gene sequencing in museum and fresh samples, with this differential being larger in museum specimens. Broadly confirming these hypotheses, the highest diversity found in fresh samples was with shotgun sequencing using the Rep200 reference inclusive of viruses and microeukaryotes, followed by the WoL reference database. In museum-specimens, community diversity metrics also differed significantly between sequencing strategies, with the alpha-diversity ACE differential being significantly greater than the same comparisons made for fresh specimens. Beta diversity results were more variable, with significance dependent on reference databases used. Taken together, these findings demonstrate important differences in diversity results and prompt important considerations for future experiments and downstream analyses aiming to incorporate microbiome datasets from museum specimens.


Assuntos
Metagenômica , Museus , Genes de RNAr , RNA Ribossômico 16S/genética , Benchmarking
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220120, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305906

RESUMO

The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Microbiota , Notophthalmus viridescens , Animais , Corticosterona/farmacologia , Glucocorticoides , Pele , Mamíferos
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220125, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305911

RESUMO

The immune equilibrium model suggests that exposure to microbes during early life primes immune responses for pathogen exposure later in life. While recent studies using a range of gnotobiotic (germ-free) model organisms offer support for this theory, we currently lack a tractable model system for investigating the influence of the microbiome on immune system development. Here, we used an amphibian species (Xenopus laevis) to investigate the importance of the microbiome in larval development and susceptibility to infectious disease later in life. We found that experimental reductions of the microbiome during embryonic and larval stages effectively reduced microbial richness, diversity and altered community composition in tadpoles prior to metamorphosis. In addition, our antimicrobial treatments resulted in few negative effects on larval development, body condition, or survival to metamorphosis. However, contrary to our predictions, our antimicrobial treatments did not alter susceptibility to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in the adult life stage. While our treatments to reduce the microbiome during early development did not play a critical role in determining susceptibility to disease caused by Bd in X. laevis, they nevertheless indicate that developing a gnotobiotic amphibian model system may be highly useful for future immunological investigations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Sistema Imunitário , Microbiota , Animais , Larva , Metamorfose Biológica , Xenopus laevis
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220126, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305917

RESUMO

With emerging diseases on the rise, there is an urgent need to identify and understand novel mechanisms of prophylactic protection in vertebrate hosts. Inducing resistance against emerging pathogens through prophylaxis is an ideal management strategy that may impact pathogens and their host-associated microbiome. The host microbiome is recognized as a critical component of immunity, but the effects of prophylactic inoculation on the microbiome are unknown. In this study, we investigate the effects of prophylaxis on host microbiome composition, focusing on the selection of anti-pathogenic microbes contributing to host acquired immunity in a model host-fungal disease system, amphibian chytridiomycosis. We inoculated larval Pseudacris regilla against the fungal pathogen Batrachochytrium dendrobatidis (Bd) with a Bd metabolite-based prophylactic. Increased prophylactic concentration and exposure duration were associated with significant increases in proportions of putatively Bd-inhibitory host-associated bacterial taxa, indicating a protective prophylactic-induced shift towards microbiome members that are antagonistic to Bd. Our findings are in accordance with the adaptive microbiome hypothesis, where exposure to a pathogen alters the microbiome to better cope with subsequent pathogen encounters. Our study advances research on the temporal dynamics of microbiome memory and the role of prophylaxis-induced shifts in microbiomes contributing to prophylaxis effectiveness. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Anuros , Microbiota , Animais , Pele , Larva , Modelos Biológicos
7.
Nat Commun ; 14(1): 3270, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277333

RESUMO

Batrachochytrium salamandrivorans (Bsal) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal, and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Comércio , Quitridiomicetos/fisiologia , Internacionalidade , Anfíbios/microbiologia , Urodelos/microbiologia , Biodiversidade , Anuros , América do Norte/epidemiologia , Micoses/veterinária , Micoses/microbiologia
8.
Microb Ecol ; 86(3): 1565-1574, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37126126

RESUMO

Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential challenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including the genera Alternaria and Metschnikowia that have the potential to be inhibitory towards fungal and bacterial pathogens.


Assuntos
Quirópteros , Microbiota , Micobioma , Animais , Quirópteros/microbiologia , Fungos/genética , Geografia
9.
Anim Microbiome ; 5(1): 28, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189209

RESUMO

BACKGROUND: Our current understanding of vertebrate skin and gut microbiomes, and their vertical transmission, remains incomplete as major lineages and varied forms of parental care remain unexplored. The diverse and elaborate forms of parental care exhibited by amphibians constitute an ideal system to study microbe transmission, yet investigations of vertical transmission among frogs and salamanders have been inconclusive. In this study, we assess bacteria transmission in Herpele squalostoma, an oviparous direct-developing caecilian in which females obligately attend juveniles that feed on their mother's skin (dermatophagy). RESULTS: We used 16S rRNA amplicon-sequencing of the skin and gut of wild caught H. squalostoma individuals (males, females, including those attending juveniles) as well as environmental samples. Sourcetracker analyses revealed that juveniles obtain an important portion of their skin and gut bacteria communities from their mother. The contribution of a mother's skin to the skin and gut of her respective juveniles was much larger than that of any other bacteria source. In contrast to males and females not attending juveniles, only the skins of juveniles and their mothers were colonized by bacteria taxa Verrucomicrobiaceae, Nocardioidaceae, and Erysipelotrichaceae. In addition to providing indirect evidence for microbiome transmission linked to parental care among amphibians, our study also points to noticeable differences between the skin and gut communities of H. squalostoma and that of many frogs and salamanders, which warrants further investigation. CONCLUSION: Our study is the first to find strong support for vertical bacteria transmission attributed to parental care in a direct-developing amphibian species. This suggests that obligate parental care may promote microbiome transmission in caecilians.

10.
Dev Comp Immunol ; 145: 104690, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37001710

RESUMO

The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.


Assuntos
Quitridiomicetos , Microbiota , Animais , Anfíbios , Pele , Mucosa
11.
Biol Rev Camb Philos Soc ; 98(3): 727-746, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36598050

RESUMO

Anthropogenic habitat disturbance is fundamentally altering patterns of disease transmission and immunity across the vertebrate tree of life. Most studies linking anthropogenic habitat change and disease focus on habitat loss and fragmentation, but these processes often lead to a third process that is equally important: habitat split. Defined as spatial separation between the multiple classes of natural habitat that many vertebrate species require to complete their life cycles, habitat split has been linked to population declines in vertebrates, e.g. amphibians breeding in lowland aquatic habitats and overwintering in fragments of upland terrestrial vegetation. Here, we link habitat split to enhanced disease risk in amphibians (i) by reviewing the biotic and abiotic forces shaping elements of immunity and (ii) through a spatially oriented field study focused on tropical frogs. We propose a framework to investigate mechanisms by which habitat split influences disease risk in amphibians, focusing on three broad host factors linked to immunity: (i) composition of symbiotic microbial communities, (ii) immunogenetic variation, and (iii) stress hormone levels. Our review highlights the potential for habitat split to contribute to host-associated microbiome dysbiosis, reductions in immunogenetic repertoire, and chronic stress, that often facilitate pathogenic infections and disease in amphibians and other classes of vertebrates. We highlight that targeted habitat-restoration strategies aiming to connect multiple classes of natural habitats (e.g. terrestrial-freshwater, terrestrial-marine, marine-freshwater) could enhance priming of the vertebrate immune system through repeated low-load exposure to enzootic pathogens and reduced stress-induced immunosuppression.


Assuntos
Anfíbios , Ecossistema , Animais , Anuros , Estágios do Ciclo de Vida
12.
Anim Microbiome ; 4(1): 69, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36582011

RESUMO

Microbial diversity positively influences community resilience of the host microbiome. However, extinction risk factors such as habitat specialization, narrow environmental tolerances, and exposure to anthropogenic disturbance may homogenize host-associated microbial communities critical for stress responses including disease defense. In a dataset containing 43 threatened and 90 non-threatened amphibian species across two biodiversity hotspots (Brazil's Atlantic Forest and Madagascar), we found that threatened host species carried lower skin bacterial diversity, after accounting for key environmental and host factors. The consistency of our findings across continents suggests the broad scale at which low bacteriome diversity may compromise pathogen defenses in species already burdened with the threat of extinction.

13.
Nat Microbiol ; 7(11): 1726-1735, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35864220

RESUMO

Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.


Assuntos
Conservação dos Recursos Naturais , Microbiota , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Animais Selvagens
14.
Ecology ; 103(9): e3759, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593515

RESUMO

Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and Rana pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multi-host communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over 3 years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different from those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Ecossistema , Micoses/epidemiologia , Micoses/veterinária , Melhoramento Vegetal , Ranidae
15.
Appl Environ Microbiol ; 88(8): e0181821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348389

RESUMO

Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.


Assuntos
Quitridiomicetos , Micoses , Animais , Bactérias/genética , Quitridiomicetos/genética , Micoses/microbiologia , Micoses/veterinária , RNA Ribossômico 16S/genética , Urodelos/microbiologia
16.
Dis Aquat Organ ; 147: 141-148, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913442

RESUMO

The increasing study of emerging wildlife pathogens and a lack of policy or legislation regulating their translocation and use has heightened concerns about laboratory escape, species spillover, and subsequent epizootics among animal populations. Responsible self-regulation by research laboratories, in conjunction with institutional-level safeguards, has an important role in mitigating pathogen transmission and spillover, as well as potential interspecies pathogenesis. A model system in disease ecology that highlights these concerns and related amelioration efforts is research focused on amphibian emerging infectious diseases. Whereas laboratory escape of amphibian pathogens has not been reported and may be rare compared with introduction events from trade or human globalization, the threat that novel disease outbreaks with mass mortality effects pose to wild populations warrants thorough biosecurity measures to ensure containment and prevent spillover. Here, we present a case study of the laboratory biosecurity concerns for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans. We conclude that proactive biosecurity strategies are needed to integrate researcher and institutional oversight of aquatic wildlife pathogens generally, and we call for increased national and international policy and legislative enforcement. Furthermore, taking professional responsibility beyond current regulations is needed as development of legal guidance can be slow at national and international levels. We outline the need for annual laboratory risk assessments, comprehensive training for all laboratory personnel, and appropriate safeguards specific to pathogens under study. These strategies are critical for upholding the integrity and credibility of the scientific community and maintaining public support for research on wildlife diseases.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Biosseguridade , Micoses/prevenção & controle , Micoses/veterinária , Pesquisa
17.
Dis Aquat Organ ; 146: 81-89, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617514

RESUMO

Detecting and quantifying pathogens with quick, cost-efficient and sensitive methods is needed across disease systems for addressing pertinent epidemiological questions. Typical methods rely on extracting DNA from collected samples. Here we develop and test an extraction-free method from water bath samples that is both sensitive and efficient for 2 major amphibian pathogens-Batrachochytrium dendrobatidis and B. salamandrivorans. We tested mock samples with known pathogen quantities as well as comparatively assessed detection from skin swabs and water baths from field sampled amphibians. Quantitative PCR (qPCR) directly on lyophilized water baths was able to reliably detect low loads of 10 and 1 zoospores for both pathogens, and detection rates were greater than those of swabs from field samples. Further concentration of samples did not improve detection, and collection container type did not influence pathogen load estimates. This method of lyophilization (i.e. freeze-drying) followed by direct qPCR offers an effective and efficient tool from detecting amphibian pathogens, which is crucial for surveillance efforts and estimating shedding rates for robust epidemiological understanding of transmission dynamics. Furthermore, water bath samples have multiple functions and can be used to evaluate mucosal function against pathogens and characterize mucosal components. The multifunctionality of water bath samples and reduced monetary costs and time expenditures make this method an optimal tool for amphibian disease research and may also prove to be useful in other wildlife disease systems.


Assuntos
Anfíbios , Banhos , Animais , Banhos/veterinária , Água
18.
J Exp Biol ; 224(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942101

RESUMO

There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.


Assuntos
Comportamento de Doença , Animais , Feminino , Lipopolissacarídeos , Masculino , Vertebrados
19.
J Aquat Anim Health ; 33(1): 24-32, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590581

RESUMO

Populations of the eastern hellbender Cryptobranchus alleganiensis alleganiensis have been declining for decades, and emerging pathogens and pesticides are hypothesized to be contributing factors. However, few empirical studies have attempted to test the potential effects of these factors on hellbenders. We simultaneously exposed subadult hellbenders to environmentally relevant concentrations of either Batrachochytrium dendrobatidis (Bd) or a frog virus 3-like ranavirus (RV), a combination of the pathogens, or each pathogen following exposure to a glyphosate herbicide (Roundup). Additionally, we measured the ability of the skin mucosome to inactivate Bd and RV in growth assays. We found that mucosome significantly inactivated RV by an average of 40% but had no negative effects on Bd growth. All treatments that included RV exposure experienced reduced survival compared to controls, and the combination of RV and herbicide resulted in 100% mortality. Histopathology verified RV as the cause of mortality in all RV-exposed treatments. No animals were infected with Bd or died in the Bd-only treatment. Our results suggest that RV exposure may be a significant threat to the survival of subadult hellbenders and that Roundup exposure may potentially exacerbate this threat.


Assuntos
Infecções por Vírus de DNA/veterinária , Glicina/análogos & derivados , Herbicidas/administração & dosagem , Imunidade Inata , Micoses/veterinária , Urodelos/imunologia , Animais , Batrachochytrium/fisiologia , Infecções por Vírus de DNA/virologia , Glicina/administração & dosagem , Micoses/microbiologia , Ranavirus/fisiologia , Glifosato
20.
PLoS Pathog ; 17(2): e1009234, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600433

RESUMO

Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N. viridescens, adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N. viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy.


Assuntos
Batrachochytrium/patogenicidade , Micoses/imunologia , Notophthalmus viridescens/imunologia , Estações do Ano , Pele/imunologia , Animais , Micoses/epidemiologia , Micoses/microbiologia , Notophthalmus viridescens/microbiologia , Pele/microbiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA