Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell Metab ; 36(2): 393-407.e7, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38242133

RESUMO

Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.


Assuntos
Carboidratos , Açúcares , Humanos , Açúcares/metabolismo , Encéfalo/metabolismo , Dieta , Hiperfagia/metabolismo
3.
Mol Metab ; 79: 101861, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142970

RESUMO

OBJECTIVE: The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS: Male REV-ERBα/ß floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/ß double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS: DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS: These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.


Assuntos
Tecido Adiposo Marrom , Rombencéfalo , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Rombencéfalo/metabolismo , Aumento de Peso
4.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077098

RESUMO

Circadian desynchrony induced by shiftwork or jetlag is detrimental to metabolic health, but how synchronous/desynchronous signals are transmitted among tissues is unknown. Here we report that liver molecular clock dysfunction is signaled to the brain via the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a previously unrecognized homeostatic feedback signal that relies on synchrony between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a therapeutic target for obesity in the setting of chrono-disruption. One Sentence Summary: The hepatic vagal afferent nerve signals internal circadian desynchrony between the brain and liver to induce maladaptive food intake patterns.

5.
PLoS One ; 18(11): e0294280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948406

RESUMO

Chemotherapy-induced memory loss ("chemobrain") can occur following treatment with the widely used chemotherapeutic agent doxorubicin (DOX). However, the mechanisms through which DOX induces cognitive dysfunction are not clear, and there are no commercially available therapies for its treatment or prevention. Therefore, the aim of this study was to determine the therapeutic potential of phenyl-2-aminoethyl selenide (PAESe), an antioxidant drug previously demonstrated to reduce cardiotoxicity associated with DOX treatment, against DOX-induced chemobrain. Four groups of male athymic NCr nude (nu/nu) mice received five weekly tail-vein injections of saline (Control group), 5 mg/kg of DOX (DOX group), 10 mg/kg PAESe (PAESe group), or 5 mg/kg DOX and 10 mg/kg PAESe (DOX+PAESe group). Spatial memory was evaluated using Y-maze and novel object location tasks, while synaptic plasticity was assessed through the measurement of field excitatory postsynaptic potentials from the Schaffer collateral circuit. Western blot analyses were performed to assess hippocampal protein and phosphorylation levels. In this model, DOX impaired synaptic plasticity and memory, and increased phosphorylation of protein kinase B (Akt) and extracellular-regulated kinase (ERK). Co-administration of PAESe reduced Akt and ERK phosphorylation and ameliorated the synaptic and memory deficits associated with DOX treatment.


Assuntos
Disfunção Cognitiva , Potenciação de Longa Duração , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doxorrubicina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Cognição
6.
Molecules ; 28(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37513464

RESUMO

Aging is a major risk factor for Alzheimer's disease (AD). AD mouse models are frequently used to assess pathology, behavior, and memory in AD research. While the pathological characteristics of AD are well established, our understanding of the changes in the metabolic phenotypes with age and pathology is limited. In this work, we used the Promethion cage systems® to monitor changes in physiological metabolic and behavioral parameters with age and pathology in wild-type and 5xFAD mouse models. Then, we assessed whether these parameters could be altered by treatment with oleocanthal, a phenolic compound with neuroprotective properties. Findings demonstrated metabolic parameters such as body weight, food and water intake, energy expenditure, dehydration, and respiratory exchange rate, and the behavioral parameters of sleep patterns and anxiety-like behavior are altered by age and pathology. However, the effect of pathology on these parameters was significantly greater than normal aging, which could be linked to amyloid-ß deposition and blood-brain barrier (BBB) disruption. In addition, and for the first time, our findings suggest an inverse correlation between sleep hours and BBB breakdown. Treatment with oleocanthal improved the assessed parameters and reduced anxiety-like behavior symptoms and sleep disturbances. In conclusion, aging and AD are associated with metabolism and behavior changes, with the changes being greater with the latter, which were rectified by oleocanthal. In addition, our findings suggest that monitoring changes in metabolic and behavioral phenotypes could provide a valuable tool to assess disease severity and treatment efficacy in AD mouse models.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fenótipo , Modelos Animais de Doenças , Camundongos Transgênicos
7.
J Nutr Biochem ; 112: 109174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280127

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma , Frutose/efeitos adversos , Frutose/metabolismo , Sacarose/efeitos adversos , Sacarose/metabolismo , Dieta Ocidental/efeitos adversos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Nutrients ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956312

RESUMO

Obesity and other metabolic diseases are major public health issues that are particularly prevalent in industrialized societies where circadian rhythmicity is disturbed by shift work, jet lag, and/or social obligations. In mammals, daylight entrains the hypothalamic suprachiasmatic nucleus (SCN) to a ≈24 h cycle by initiating a transcription/translation feedback loop (TTFL) of molecular clock genes. The downstream impacts of the TTFL on clock-controlled genes allow the SCN to set the rhythm for the majority of physiological, metabolic, and behavioral processes. The TTFL, however, is ubiquitous and oscillates in tissues throughout the body. Tissues outside of the SCN are entrained to other signals, such as fed/fasting state, rather than light input. This system requires a considerable amount of biological flexibility as it functions to maintain homeostasis across varying conditions contained within a 24 h day. In the face of either circadian disruption (e.g., jet lag and shift work) or an obesity-induced decrease in metabolic flexibility, this finely tuned mechanism breaks down. Indeed, both human and rodent studies have found that obesity and metabolic disease develop when endogenous circadian pacing is at odds with the external cues. In the following review, we will delve into what is known on the circadian rhythmicity of nutrient metabolism and discuss obesity as a circadian disease.


Assuntos
Relógios Circadianos , Doenças Metabólicas , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Dieta , Humanos , Síndrome do Jet Lag , Mamíferos , Doenças Metabólicas/etiologia , Nutrientes , Obesidade/etiologia
9.
Sci Adv ; 7(44): eabh2007, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705514

RESUMO

Circadian disruption, as occurs in shift work, is associated with metabolic diseases often attributed to a discordance between internal clocks and environmental timekeepers. REV-ERB nuclear receptors are key components of the molecular clock, but their specific role in the SCN master clock is unknown. We report here that mice lacking circadian REV-ERB nuclear receptors in the SCN maintain free-running locomotor and metabolic rhythms, but these rhythms are notably shortened by 3 hours. When housed under a 24-hour light:dark cycle and fed an obesogenic diet, these mice gained excess weight and accrued more liver fat than controls. These metabolic disturbances were corrected by matching environmental lighting to the shortened endogenous 21-hour clock period, which decreased food consumption. Thus, SCN REV-ERBs are not required for rhythmicity but determine the free-running period length. Moreover, these results support the concept that dissonance between environmental conditions and endogenous time periods causes metabolic disruption.

10.
Front Cell Infect Microbiol ; 11: 671926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414128

RESUMO

Obesity has increased at an alarming rate over the past two decades in the United States. In addition to increased body mass, obesity is often accompanied by comorbidities such as Type II Diabetes Mellitus and metabolic dysfunction-associated fatty liver disease, with serious impacts on public health. Our understanding of the role the intestinal microbiota in obesity has rapidly advanced in recent years, especially with respect to the bacterial constituents. However, we know little of when changes in these microbial populations occur as obesity develops. Further, we know little about how other domains of the microbiota, namely bacteriophage populations, are affected during the progression of obesity. Our goal in this study was to monitor changes in the intestinal microbiome and metabolic phenotype following western diet feeding. We accomplished this by collecting metabolic data and fecal samples for shotgun metagenomic sequencing in a mouse model of diet-induced obesity. We found that after two weeks of consuming a western diet (WD), the animals weighed significantly more and were less metabolically stable than their chow fed counterparts. The western diet induced rapid changes in the intestinal microbiome with the most pronounced dissimilarity at 12 weeks. Our study highlights the dynamic nature of microbiota composition following WD feeding and puts these events in the context of the metabolic status of the mammalian host.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Obesidade , Fenótipo
11.
Heliyon ; 7(7): e07456, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34296005

RESUMO

Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.

12.
Adipocyte ; 9(1): 567-575, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32954932

RESUMO

The distinction between biological processes of adipose tissue expansion is crucial to understanding metabolic derangements, but a robust method for quantifying adipocyte size has yet to be standardized. Here, we compared three methods for histological analysis in situ: one conventional approach using individual micrographs acquired by digital camera, and two with whole-slide image analysis pipelines involving proprietary (Visiopharm) and open-source software (QuPath with a novel ImageJ plugin). We found that micrograph analysis identified 10-40 times fewer adipocytes than whole-slide methods, and this small sample size resulted in high variances that could lead to statistical errors. The agreement of the micrograph method to measure adipocyte area with each of the two whole-slide methods was substantially less (R2 of 0.6644 and 0.7125) than between the two whole-slide methods (R2 of 0.9402). These inconsistencies were more pronounced in samples from high-fat diet fed mice. While the use of proprietary software resulted in the highest adipocyte count, the lower cost, ease of use, and minimal variances of the open-source software provided a distinct advantage for measuring the number and size of adipocytes. In conclusion, we recommend whole-slide image analysis methods to consistently measure adipocyte area and avoid unintentional errors due to small sample sizes.


Assuntos
Adipócitos/patologia , Tecido Adiposo/patologia , Histocitoquímica/métodos , Processamento de Imagem Assistida por Computador/métodos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Tamanho Celular , Dieta Hiperlipídica , Hipertrofia , Masculino , Camundongos , Microscopia , Obesidade/metabolismo , Obesidade/patologia
13.
Physiol Behav ; 223: 112905, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446780

RESUMO

Obesity is a major public health concern and overconsumption of unhealthy fats and sugary beverages are contributing factors. Time-restricted feeding can reduce obesity-associated pathophysiological parameters by limiting the time of food consumption; however, the effects of time-restricted sugary water consumption are unknown. To examine whether liquid calorie restriction impacts metabolic health, we measured metabolic parameters in mice provided liquid sugar at various intervals during the active phase. The control (Con) group received tap water, the adlibitum fructose-glucose (ALFG) group received ad libitumsugar water and the early fructose-glucose (EFG) and late fructose-glucose (LFG) groups received liquid sugar during the first and last six hours of the active period, respectively. Each group was given free access to chow. Zeitgeber time (ZT) notation was used to set all experimental time points to lights on as ZT 0. The ALFG group exhibited elevated body and adipose tissue weights compared to the other groups and increased hepatic steatosis compared to the Con group. The ALFG group consumed more calories than the other groups during ZT 6-11, indicating that this window may be critical in the promotion of weight gain from liquid sugar consumption. The EFG group exhibited higher levels of energy expenditure than the Con and LFG groups during the first half of the active period (ZT 12-17); however, there was no difference among the groups during the second half of the active period (ZT18-23). In contrast, the EFG group exhibited lower respiratory exchange ratio than other groups during the inactive period as well as the second half of the active period, indicating that the EFG group had greater metabolic flexibility and utilized lipids when carbohydrates from liquid sugar were not available. Additionally, the EFG group was more insulin tolerant than the ALFG and Con groups. Our results support the hypothesis that time-restricted liquid calorie restriction aids in reducing the detrimental metabolic effects of sugary drink consumption.


Assuntos
Fígado Gorduroso , Açúcares , Animais , Sacarose Alimentar , Frutose , Camundongos , Obesidade
14.
Brain Behav Immun ; 88: 815-825, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454134

RESUMO

Western diet (WD) feeding disrupts core clock gene expression in peripheral tissues and contributes to WD-induced metabolic disease. The hippocampus, the mammalian center for memory, is also sensitive to WD feeding, but whether the WD disrupts its core clock is unknown. To this end, male mice were maintained on a WD for 16 weeks and diurnal metabolism, gene expression and memory were assessed. WD-induced obesity disrupted the diurnal rhythms of whole-body metabolism, markers of inflammation and hepatic gene expression, but did not disrupt diurnal expression of hypothalamic Bmal1, Npas2 and Per2. However, all measured core clock genes were disrupted in the hippocampus after WD feeding and the expression pattern of genes implicated in Alzheimer's disease and synaptic function were altered. Finally, WD feeding disrupted hippocampal memory in a task- and time-dependent fashion. Our results implicate WD-induced alterations in the rhythmicity of hippocampal gene expression in the etiology of diet-induced memory deficits.


Assuntos
Ritmo Circadiano , Regulação da Expressão Gênica , Hipocampo , Obesidade/genética , Animais , Ritmo Circadiano/genética , Dieta Ocidental/efeitos adversos , Expressão Gênica , Masculino , Camundongos
15.
Front Immunol ; 11: 614697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33628207

RESUMO

It is widely accepted that infection and immune response incur significant metabolic demands, yet the respective demands of specific immune responses to live pathogens have not been well delineated. It is also established that upon activation, metabolic pathways undergo shifts at the cellular level. However, most studies exploring these issues at the systemic or cellular level have utilized pathogen associated molecular patterns (PAMPs) that model sepsis, or model antigens at isolated time points. Thus, the dynamics of pathogenesis and immune response to a live infection remain largely undocumented. To better quantitate the metabolic demands induced by infection, we utilized a live pathogenic infection model. Mice infected with Listeria monocytogenes were monitored longitudinally over the course of infection through clearance. We measured systemic metabolic phenotype, bacterial load, innate and adaptive immune responses, and cellular metabolic pathways. To further delineate the role of adaptive immunity in the metabolic phenotype, we utilized two doses of bacteria, one that induced both sickness behavior and protective (T cell mediated) immunity, and the other protective immunity alone. We determined that the greatest impact to systemic metabolism occurred during the early immune response, which coincided with the greatest shift in innate cellular metabolism. In contrast, during the time of maximal T cell expansion, systemic metabolism returned to resting state. Taken together, our findings demonstrate that the timing of maximal metabolic demand overlaps with the innate immune response and that when the adaptive response is maximal, the host has returned to relative metabolic homeostasis.


Assuntos
Imunidade Inata , Listeria monocytogenes/imunologia , Listeriose/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Carga Bacteriana , Peso Corporal , Metabolismo Energético , Feminino , Imunidade Celular , Letargia/metabolismo , Letargia/microbiologia , Listeriose/microbiologia , Listeriose/patologia , Fígado/microbiologia , Camundongos , Consumo de Oxigênio , Baço/microbiologia
16.
Toxicol Mech Methods ; 29(6): 457-466, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31010378

RESUMO

Cognitive deficits are commonly reported by patients following treatment with chemotherapeutic agents. Anthracycline-containing chemotherapy regimens are associated with cognitive impairment and reductions in neuronal connectivity in cancer survivors, and doxorubicin (Dox) is a commonly used anthracycline. Although it has been reported that Dox distribution to the central nervous system (CNS) is limited, considerable Dox concentrations are observed in the brain with co-administration of certain medications. Additionally, pro-inflammatory cytokines, which are overproduced in cancer or in response to chemotherapy, can reduce the integrity of the blood-brain barrier (BBB). Therefore, the aim of this study was to evaluate the acute neurotoxic effects of Dox on hippocampal neurons. In this study, we utilized a hippocampal cell line (H19-7/IGF-IR) along with rodent hippocampal slices to evaluate the acute neurotoxic effects of Dox. Hippocampal slices were used to measure long-term potentiation (LTP), and expression of proteins was determined by immunoblotting. Cellular assays for mitochondrial complex activity and lipid peroxidation were also utilized. We observed reduction in LTP in hippocampal slices with Dox. In addition, lipid peroxidation was increased as measured by thiobarbituric acid reactive substances content indicating oxidative stress. Caspase-3 expression was increased indicating an increased propensity for cell death. Finally, the phosphorylation of signaling molecules which modulate LTP including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt were increased. This data indicates that acute Dox exposure dose-dependently impairs synaptic processes associated with hippocampal neurotransmission, induces apoptosis, and increases lipid peroxidation leading to neurotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Hipocampo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Ratos , Ratos Sprague-Dawley
17.
Nutr Neurosci ; 21(5): 328-336, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28195006

RESUMO

OBJECTIVES: The purpose of the current study is to directly compare a diet high in fat with a diet high in fructose. This side-by-side comparison will allow us to determine the physiological and behavioral effects resulting from the consumption of a diet dominated by one macronutrient. METHODS: Rats were fed pelletized food containing either 60% fat or 55% fructose diet, or control chow (5.8% kcal of fat, 44.3% kcal carb) for 9 weeks. Animals performed a classic Morris Water Maze (MWM) and a reversal MWM to assess spatial and working memory near the end of the feeding period. At termination, tissue samples were collected including trunk blood, livers, fat pads, and brain punches. RESULTS: Animals maintained on the high-fat diet weighed more by the end of the feeding period, had a higher percent body weight change and had higher fat pad weight than the high-fructose and control group. The high-fructose group had higher serum insulin levels than the high-fat group and higher total triglycerides than control or high-fat groups. Additionally, the high-fructose group entered the target quadrant significantly less than high-fat fed animals in the reverse MWM task. DISCUSSION: These data suggest that fat accumulation and weight gain are influenced by the high-fat component of the Western-style diet. However, insulin resistance and elevated serum triglycerides are impacted more by high levels of fructose in the diet. Comparative data between a high-fat and high-fructose diet in a single study are novel and shed light on two of the individual components of a Western-style diet.


Assuntos
Adiposidade , Comportamento Animal , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Frutose/administração & dosagem , Aumento de Peso , Animais , Glicemia/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta Ocidental , Carboidratos da Dieta/administração & dosagem , Insulina/sangue , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
18.
Metabolism ; 82: 1-13, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29253490

RESUMO

BACKGROUND: Obesity is a major public health concern that can result from diets high in fat and sugar, including sugar sweetened beverages. A proposed treatment for dietary-induced obesity is time-restricted feeding (TRF), which restricts consumption of food to specific times of the 24-hour cycle. Although TRF shows great promise to prevent obesity and the development of chronic disease, the effects of TRF to reverse metabolic changes and the development of NAFLD in animal models of a Western diet with sugary water consumption is not known. OBJECTIVE: The objective of the current study was to evaluate the role of TRF in the treatment of obesity and NAFLD through examination of changes in metabolic and histopathologic parameters. METHODS: To better understand the role of TRF in the treatment of obesity and NAFLD, we investigated the metabolic phenotype and NAFLD parameters in a mouse model of NAFLD in which obesity and liver steatosis are induced by a Western Diet (WD): a high-fat diet of lard, milkfat and Crisco with sugary drinking water. Mice were subjected to a short-term (4-weeks) and long-term (10-weeks) TRF in which food was restricted to 9h at night. RESULTS: Prior to TRF treatment, the WD mice had increased body mass, and exhibited less activity, and higher average daytime energy expenditure (EE) than chow fed mice. Approximately 4- and 10-weeks following TFR treatment, WD-TRF had moderate but not statistically significant weight loss compared to WD-ad libitum (WD-AL) mice. There was a modest but significant reduction in the inguinal adipose tissue weight in both WD-TRF groups compared to the WD-AL groups; however, there was no difference in epididymal and retroperitoneal adipose tissue mass or adipocyte size distribution. In contrast, the diet-induced increase in normalized liver tissue weight, hepatic triglyceride, and NAFLD score was partially abrogated in the 4-week WD-TRF mice, while systemic insulin resistance was partially abrogated and glucose intolerance was completely abrogated in the 10-week WD-TRF mice. Importantly, WD-induced metabolic dysfunction (substrate utilization, energy expenditure, and activity) was partially abrogated by 4- and 10-week TRF. CONCLUSIONS: Our results support the hypothesis that TRF aids in reducing the detrimental metabolic effects of consuming a WD with sugary drinking water but does not ameliorate obesity.


Assuntos
Metabolismo Energético/fisiologia , Fígado Gorduroso/metabolismo , Privação de Alimentos/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Animais , Dieta Ocidental , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Obesidade/patologia
19.
Physiol Behav ; 151: 147-54, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26192711

RESUMO

The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical relevance.


Assuntos
Dieta Ocidental/efeitos adversos , Hipercinese/fisiopatologia , Insulinas/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Animais , Ansiedade/fisiopatologia , Atenção/fisiologia , Glicemia/metabolismo , Peso Corporal , Dieta Ocidental/psicologia , Modelos Animais de Doenças , Função Executiva/fisiologia , Comportamento Impulsivo/fisiologia , Masculino , Memória Episódica , Distribuição Aleatória , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA