Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 85: 159-166, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111565

RESUMO

Advanced microbiome therapeutics have emerged as a powerful approach for the treatment of numerous diseases. While the genetic instability of genetically engineered microorganisms is a well-known challenge in the scale-up of biomanufacturing processes, it has not yet been investigated for advanced microbiome therapeutics. Here, the evolution of engineered Escherichia coli Nissle 1917 strains producing Interleukin 2 and Aldafermin were investigated in two strain backgrounds with and without the three error-prone DNA polymerases polB, dinB, and umuDC, which contribute to the mutation rate of the host strain. Whole genome short-read sequencing revealed the genetic instability of the pMUT-based production plasmid after serial passaging for approximately 150 generations using an automated platform for high-throughput microbial evolution in five independent lineages for six distinct strains. While a reduction of the number of mutations of 12%-43% could be observed after the deletion of the error-prone DNA polymerases, the interruption of production-relevant genes could not be prevented, highlighting the need for additional strategies to improve the stability of advanced microbiome therapeutics.

2.
Biotechnol Bioeng ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970785

RESUMO

Bio-based production of fuels, chemicals and materials is needed to replace current fossil fuel based production. However, bio-based production processes are very costly, so the process needs to be as efficient as possible. Developments in synthetic biology tools has made it possible to dynamically modulate cellular metabolism during a fermentation. This can be used towards two-stage fermentations, where the process is separated into a growth and a production phase, leading to more efficient feedstock utilization and thus potentially lower costs. This article reviews the current status and some recent results in application of synthetic biology tools towards two-stage fermentations, and compares this approach to pre-existing ones, such as nutrient limitation and addition of toxins/inhibitors.

3.
Environ Pollut ; 357: 124348, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936790

RESUMO

Organochlorides and particularly chlorophenols are environmental pollutants that deserve special attention. Enzymatic membrane bioreactors may be alternatives for efficiently removing such hazardous organochlorides from aqueous solutions. We propose here a novel enzymatic membrane bioreactor comprising an ultrafiltration membrane GR81PP, electrospun fibers made of cellulose acetate, and laccase immobilized using an incubation and a fouling approach. Configurations of this biosystem exhibiting the highest catalytic activity were selected for removal of 2-chlorophenol and 4-chlorophenol from aqueous solution in an enzymatic membrane bioreactor under various process conditions. The highest removal of chlorophenols, at 88% and 74% for 2-chlorophenol and 4-chlorophenol, respectively, occurred at pH 5 and 30 °C in the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method. Furthermore, the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method exhibited significant reusability and storage stability compared with the biosystem with laccase immobilized by the incubation method. The mechanism of enzyme immobilization is based on pore blocking and cake-layer formation, while the mechanism of chlorophenols removal was identified as a synergistic combination of membrane separation and enzymatic conversion. The importance of the conducted research is due to efficient removal of hazardous organochlorides using a novel enzymatic membrane bioreactor. The study demonstrates the biosystem's high catalytic activity, reusability, and stability, offering a promising solution for environmental pollution control.


Assuntos
Reatores Biológicos , Clorofenóis , Lacase , Membranas Artificiais , Poluentes Químicos da Água , Clorofenóis/química , Lacase/metabolismo , Lacase/química , Poluentes Químicos da Água/química , Enzimas Imobilizadas/química , Celulose/química , Purificação da Água/métodos
4.
Chembiochem ; : e202400178, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742869

RESUMO

Natural and pure p-coumaric acid has valuable applications, and it can be produced via bioprocessing. However, fermentation processes have so far been unable to provide sufficient production metrics, while a biocatalytic process decoupling growth and production historically showed much promise. This biocatalytic process is revisited in order to tackle product inhibition of the key enzyme tyrosine ammonia lyase. In situ product removal is proposed as a possible solution, and a polymer/salt aqueous two-phase system is identified as a suitable system for extraction of p-coumaric acid from an alkaline solution, with a partition coefficient of up to 13. However, a 10 % salt solution was found to reduce tyrosine ammonia lyase activity by 19 %, leading to the need for a more dilute system. The cloud points of two aqueous two-phase systems at 40 °C and pH 10 were found to be 3.8 % salt and 9.5 % polymer, and a 5 % potassium phosphate and 12.5 % poly(ethylene glycol-ran-propylene glycol) mW~2500 system was selected for in situ product removal. An immobilized tyrosine ammonia lyase biocatalyst in this aqueous two-phase system produced up to 33 g/L p-coumaric acid within 24 hours, a 1.9-fold improvement compared to biocatalysis without in situ product removal.

5.
J Chromatogr A ; 1718: 464682, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341900

RESUMO

A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.


Assuntos
Saccharomycetales , Anticorpos de Cadeia Única , Pichia/metabolismo , Saccharomycetales/metabolismo , Fermentação , Proteínas Recombinantes/metabolismo
6.
Org Process Res Dev ; 27(6): 1111-1121, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38779303

RESUMO

Biocatalytic oxidation is an interesting prospect for the selective synthesis of active pharmaceutical intermediates. Bubbling air or oxygen is considered as an efficient method to increase the gas-liquid interface and thereby enhance oxygen transfer. However, the enzyme is deactivated in this process and needs to be further studied and understood to accelerate the implementation of oxidative biocatalysis in larger production processes. This paper reports data on the stability of NAD(P)H oxidase (NOX) when exposed to different gas-liquid interfaces introduced by N2 (0% oxygen), air (21% oxygen), and O2 (100% oxygen) in a bubble column. A pH increase was observed during gas bubbling, with the highest increase occurring under air bubbling from 6.28 to 7.40 after 60 h at a gas flow rate of 0.15 L min-1. The kinetic stability of NOX was studied under N2, air, and O2 bubbling by measuring the residual activity, the deactivation constants (kd1) were 0.2972, 0.0244, and 0.0346 with the corresponding half-lives of 2.2, 28.6, and 20.2 h, respectively. A decrease in protein concentration of the NOX solution was also observed and was attributed to likely enzyme aggregation at the gas-liquid interface. Most aggregation occurred at the air-water interface and decreased greatly from 100 to 14.16% after 60 h of bubbling air. Furthermore, the effect of the gas-liquid interface and the dissolved gas on the NOX deactivation process was also studied by bubbling N2 and O2 alternately. It was found that the N2-water interface and O2-water interface both had minor effects on the protein concentration decrease compared with the air-water interface, whilst the dissolved N2 in water caused serious deactivation of NOX. This was attributed not only to the NOX unfolding and aggregation at the interface but also to the N2 occupying the oxygen channel of the enzyme and the resultant inaccessibility of dissolved O2 to the active site of NOX. These results shed light on the enzyme deactivation process and might further inspire bioreactor operation and enzyme engineering to improve biocatalyst performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA