Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 255: 119215, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436615

RESUMO

As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development StudySM (ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan changes observed with repeated imaging may reflect development but may also reflect practice effects, day-to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic resonance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned five times over five weeks. We report on the task-based imaging data (n = 7). In-scanner stop-signal (SST), monetary incentive delay (MID), and emotional n-back (EN-back) task behavioral performance did not change across sessions. Post-scan recognition memory for emotional n-back stimuli, however, did improve as participants became more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrating differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood and benchmarking neurodevelopmental change observed in the open-access ABCD Study.


Assuntos
Encéfalo , Neuroimagem , Adolescente , Adulto , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Reprodutibilidade dos Testes
2.
Front Neuroimaging ; 1: 953215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555184

RESUMO

The "replication crisis" in neuroscientific research has led to calls for improving reproducibility. In traditional neuroscience analyses, irreproducibility may occur as a result of issues across various stages of the methodological process. For example, different operating systems, different software packages, and even different versions of the same package can lead to variable results. Nipype, an open-source Python project, integrates different neuroimaging software packages uniformly to improve the reproducibility of neuroimaging analyses. Nipype has the advantage over traditional software packages (e.g., FSL, ANFI, SPM, etc.) by (1) providing comprehensive software development frameworks and usage information, (2) improving computational efficiency, (3) facilitating reproducibility through sufficient details, and (4) easing the steep learning curve. Despite the rich tutorials it has provided, the Nipype community lacks a standard three-level GLM tutorial for FSL. Using the classical Flanker task dataset, we first precisely reproduce a three-level GLM analysis with FSL via Nipype. Next, we point out some undocumented discrepancies between Nipype and FSL functions that led to substantial differences in results. Finally, we provide revised Nipype code in re-executable notebooks that assure result invariability between FSL and Nipype. Our analyses, notebooks, and operating software specifications (e.g., docker build files) are available on the Open Science Framework platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA