Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474235

RESUMO

Combined radiation with hemorrhage (combined injury, CI) exacerbates hematopoietic acute radiation syndrome and mortality compared to radiation alone (RI). We evaluated the effects of RI or CI on blood cell depletion as a biomarker to differentiate the two. Male CD2F1 mice were exposed to 8.75 Gy γ-radiation (60Co). Within 2 h of RI, animals were bled under anesthesia 0% (RI) or 20% (CI) of total blood volume. Blood samples were collected at 4-5 h and days 1, 2, 3, 7, and 15 after RI. CI decreased WBC at 4-5 h and continued to decrease it until day 3; counts then stayed at the nadir up to day 15. CI decreased neutrophils, lymphocytes, monocytes, eosinophils, and basophils more than RI on day 1 or day 2. CI decreased RBCs, hemoglobin, and hematocrit on days 7 and 15 more than RI, whereas hemorrhage alone returned to the baseline on days 7 and 15. RBCs depleted after CI faster than post-RI. Hemorrhage alone increased platelet counts on days 2, 3, and 7, which returned to the baseline on day 15. Our data suggest that WBC depletion may be a potential biomarker within 2 days post-RI and post-CI and RBC depletion after 3 days post-RI and post-CI. For hemorrhage alone, neutrophil counts at 4-5 h and platelets for day 2 through day 7 can be used as a tool for confirmation.


Assuntos
Eritrócitos , Hemorragia , Masculino , Animais , Camundongos , Raios gama , Monócitos , Biomarcadores
2.
Front Public Health ; 11: 1268325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162617

RESUMO

Introduction: Brain hemorrhage was found between 13 and 16 days after acute whole-body 9.5 Gy 60Co-γ irradiation (IR). This study tested countermeasures mitigating brain hemorrhage and increasing survival from IR. Previously, we found that pegylated G-CSF therapy (PEG) (i.e., Neulasta®, an FDA-approved drug) improved survival post-IR by 20-40%. This study investigated whether Ciprofloxacin (CIP) could enhance PEG-induced survival and whether IR-induced brain hemorrhage could be mitigated by PEG alone or combined with CIP. Methods: B6D2F1 female mice were exposed to 60Co-γ-radiation. CIP was fed to mice for 21 days. PEG was injected on days 1, 8, and 15. 30-day survival and weight loss were studied in mice treated with vehicles, CIP, PEG, or PEG + CIP. For the early time point study, blood and sternums on days 2, 4, 9, and 15 and brains on day 15 post-IR were collected. Platelet numbers, brain hemorrhage, and histopathology were analyzed. The cerebellum/pons/medulla oblongata were detected with glial fibrillary acidic protein (GFAP), p53, p16, interleukin-18 (IL-18), ICAM1, Claudin 2, ZO-1, and complement protein 3 (C3). Results: CIP + PEG enhanced survival after IR by 85% vs. the 30% improvement by PEG alone. IR depleted platelets, which was mitigated by PEG or CIP + PEG. Brain hemorrhage, both surface and intracranial, was observed, whereas the sham mice displayed no hemorrhage. CIP or CIP + PEG significantly mitigated brain hemorrhage. IR reduced GFAP levels that were recovered by CIP or CIP + PEG, but not by PEG alone. IR increased IL-18 levels on day 4 only, which was inhibited by CIP alone, PEG alone, or PEG + CIP. IR increased C3 on day 4 and day 15 and that coincided with the occurrence of brain hemorrhage on day 15. IR increased phosphorylated p53 and p53 levels, which was mitigated by CIP, PEG or PEG + CIP. P16, Claudin 2, and ZO-1 were not altered; ICAM1 was increased. Discussion: CIP + PEG enhanced survival post-IR more than PEG alone. The Concurrence of brain hemorrhage, C3 increases and p53 activation post-IR suggests their involvement in the IR-induced brain impairment. CIP + PEG effectively mitigated the brain lesions, suggesting effectiveness of CIP + PEG therapy for treating the IR-induced brain hemorrhage by recovering GFAP and platelets and reducing C3 and p53.


Assuntos
Ciprofloxacina , Fator Estimulador de Colônias de Granulócitos , Hemorragias Intracranianas , Feminino , Animais , Camundongos , Camundongos Endogâmicos , Ciprofloxacina/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Polietilenoglicóis/administração & dosagem , Hemorragias Intracranianas/sangue , Hemorragias Intracranianas/tratamento farmacológico , Hemorragias Intracranianas/patologia , Raios gama , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Claudina-2/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Interleucina-18/sangue , Complemento C3/análise , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA