Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 9(2)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091776

RESUMO

In the developing world, the identification of clean, potable water continues to pose a pervasive challenge, and waterborne diseases due to fecal contamination of water supplies significantly threaten public health. The ability to efficiently monitor local water supplies is key to water safety, yet no low-cost, reliable method exists to detect contamination quickly. We developed an in vitro assay utilizing an odorant-binding protein (OBP), AgamOBP1, from the mosquito, Anopheles gambiae, to test for the presence of a characteristic metabolite, indole, from harmful coliform bacteria. We demonstrated that recombinantly expressed AgamOBP1 binds indole with high sensitivity. Our proof-of-concept assay is fluorescence-based and demonstrates the usefulness of insect OBPs as detector elements in novel biosensors that rapidly detect the presence of bacterial metabolic markers, and thus of coliform bacteria. We further demonstrated that rAgamOBP1 is suitable for use in portable, inexpensive "dipstick" biosensors that improve upon lateral flow technology since insect OBPs are robust, easily obtainable via recombinant expression, and resist detector "fouling." Moreover, due to their wide diversity and ligand selectivity, insect chemosensory proteins have other biosensor applications for various analytes. The techniques presented here therefore represent platform technologies applicable to various future devices.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Qualidade da Água , Animais , Anopheles/química , Indóis/análise , Proteínas de Insetos/química , Proteínas de Insetos/genética , Receptores Odorantes/química , Receptores Odorantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
PLoS One ; 8(7): e69412, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861970

RESUMO

The initial steps of odorant recognition in the insect olfactory system involve odorant binding proteins (OBPs) and odorant receptors (ORs). While large families of OBPs have been identified in the malaria vector A. gambiae, little is known about their expression pattern in the numerous sensory hairs of the female antenna. We applied whole mount fluorescence in Situ hybridization (WM-FISH) and fluorescence immunohistochemistry (WM-FIHC) to investigate the sensilla co-expression of eight A. gambiae OBPs (AgOBPs), most notably AgOBP1 and AgOBP4, which all have abundant transcripts in female antenna. WM-FISH analysis of female antennae using AgOBP-specific probes revealed marked differences in the number of cells expressing each various AgOBPs. Testing combinations of AgOBP probes in two-color WM-FISH resulted in distinct cellular labeling patterns, indicating a combinatorial expression of AgOBPs and revealing distinct AgOBP requirements for various functional sensilla types. WM-FIHC with antisera to AgOBP1 and AgOBP4 confirmed expression of the respective proteins by support cells and demonstrated a location of OBPs within sensilla trichodea. Based on the finding that AgOBP1 and AgOBP4 as well as the receptor type AgOR2 are involved in the recognition of indole, experiments were performed to explore if the AgOBP-types and AgOR2 are co-expressed in distinct olfactory sensilla. Applying two-color WM-FISH with AgOBP-specific probes and probes specific for AgOR2 revealed a close association of support cells bearing transcripts for AgOBP1 and AgOBP4 and neurons with a transcript for the receptor AgOR2. Moreover, combined WM-FISH/-FIHC approaches using an AgOR2-specific riboprobe and AgOBP-specific antisera revealed the expression of the "ligand-matched" AgOBP1, AgOBP4 and AgOR2 to single trichoid hairs. This result substantiates the notion that a specific response to indole is mediated by an interplay of the proteins.


Assuntos
Anopheles/metabolismo , Receptores Odorantes/metabolismo , Sensilas/metabolismo , Animais , Anopheles/genética , Vetores de Doenças , Feminino , Expressão Gênica , Malária/transmissão , Transporte Proteico , Receptores Odorantes/genética
3.
PLoS One ; 5(3): e9471, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20208991

RESUMO

Haematophagous insects are frequently carriers of parasitic diseases, including malaria. The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa and is thus responsible for thousands of deaths daily. Although the role of olfaction in A. gambiae host detection has been demonstrated, little is known about the combinations of ligands and odorant binding proteins (OBPs) that can produce specific odor-related responses in vivo. We identified a ligand, indole, for an A. gambiae odorant binding protein, AgamOBP1, modeled the interaction in silico and confirmed the interaction using biochemical assays. RNAi-mediated gene silencing coupled with electrophysiological analyses confirmed that AgamOBP1 binds indole in A. gambiae and that the antennal receptor cells do not respond to indole in the absence of AgamOBP1. This case represents the first documented instance of a specific A. gambiae OBP-ligand pairing combination, demonstrates the significance of OBPs in odor recognition, and can be expanded to the identification of other ligands for OBPs of Anopheles and other medically important insects.


Assuntos
Anopheles/metabolismo , Indóis/metabolismo , Receptores Odorantes/metabolismo , Animais , Eletrofisiologia/métodos , Feminino , Indóis/química , Ligantes , Masculino , Modelos Biológicos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/metabolismo , Fatores Sexuais , Fatores de Tempo
4.
Bioessays ; 25(10): 1011-20, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14505368

RESUMO

In spite of advances in medicine and public health, malaria and other mosquito-borne diseases are on the rise worldwide. Although vaccines, genetically modified mosquitoes and safer insecticides are under development, herein we examine a promising new approach to malaria control through better repellents. Current repellents, usually based on DEET, inhibit host finding by impeding insect olfaction, but have significant drawbacks. We discuss how comparative genomics, using data from the Anopheles genome project, allows the rapid identification of members of three protein classes critical to insect olfaction: odorant-binding proteins, G-protein-coupled receptors, and odorant-degrading enzymes. A rational design approach similar to that used by the pharmaceutical industry for drug development can then be applied to the development of products that interfere with mosquito olfaction. Such products have the potential to provide more complete, safer and longer lasting protection than conventional repellents, preventing disease transmission by interrupting the parasite life cycle.


Assuntos
Controle de Mosquitos , Animais , Anopheles , DEET/farmacologia , Feminino , Genoma , Humanos , Repelentes de Insetos/metabolismo , Repelentes de Insetos/farmacologia , Modelos Anatômicos , Modelos Biológicos , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/metabolismo
5.
Rouxs Arch Dev Biol ; 199(4): 219-227, 1990 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28306107

RESUMO

In the insectDrosophila, formation of the puparium marks the onset of metamorphosis and serves as a useful marker for developmental progress. The cells of the adult remain diploid and divide during the larval stage while the larval cells become polytene and do not divide. We use a high dose of gamma-irradiation (10 krad) to selectively delete the imaginal lineage from the developing larvae ofDrosophila melanogaster. We find that animals depleted of imaginal cells including those of the imaginal brain pupariate only if the larval cells are allowed to mature, demonstrating that the larval cells harbor the primary developmental timer for this process. However, proliferating imaginal cells can exert a negative influence on the timing of pupariation.

6.
Rouxs Arch Dev Biol ; 196(6): 339-346, 1987 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28305633

RESUMO

Unevaginated and evaginated Drosophila imaginal discs were surface-labeled with 125I. Relative labeling was greater in eleven peptides and lower in three peptides of evaginated discs compared to unevaginated discs. These results are compared to the effects of 20-hydroxyecdysone (20-HOE) on metabolic labeling of membrane proteins fractionated from imaginal discs, and on cell surface labeling of a hormone-responsive Drosophila tissue culture line. A group of 35S-methionine labeled membrane fraction peptides whose metabolic labeling is 20-HOE dependent have isoelectric points and apparent molecular weights very similar to those of a group of proteins only labeled in iodinated evaginated discs, supporting the conclusion that these are hormone-dependent, cell surface proteins (Rickoll and Fristrom 1983). Based upon two-dimensional gel electrophoretic and immunological criteria three of the proteins showing increased labeling in evaginated discs are related to three proteins induced by 20-HOE in tissue culture cells. Two different subsets of radiolabeled peptides were observed in the imaginal discs based upon detergent solubility. Some of the proteins which are soluble in NP-40 plus urea but insoluble in NP-40 alone may be localized in the basal lamina of the imaginal discs, a structure which labels heavily with 125I and is lacking in tissue culture cells. In discs, the majority of hormone-dependent changes in radiolabeled peptides were seen in the fraction solubilized by NP-40 and urea with a sulfhydryl reducing agent, while in tissue culture cells, the majority of differences is seen in the fraction solubilized by NP-40 only. We speculate that these proteins may be involved in similar processes, e.g., cell rearrangement, that occur during both disc morphogenesis and 20-HOE induced aggregation in tissue culture cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA