Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 459(3): 451-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19823867

RESUMO

Bacterial lipopolysaccharides (LPS) are potent inducers of proinflammatory signaling pathways via the activation of nuclear factor-kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK), causing changes in the processes that control lung fluid homeostasis and contributing to the pathogenesis of lung disease. In human H441 airway epithelial cells, incubation of cells with 15 microg ml(-1) LPS caused a significant reduction in amiloride-sensitive I (sc) from 15 +/- 2 to 8 +/- 2 microA cm(-2) (p = 0.01, n = 13) and a shift in IC(50) amiloride of currents from 6.8 x 10(-7) to 6.4 x 10(-6) M. This effect was associated with a decrease in the activity of 5 pS, highly Na(+) selective, amiloride-sensitive <1 microM channels (HSC) and an increase in the activity of approximately 18 pS, nonselective, amiloride-sensitive >10 microM cation channels (NSC) in the apical membrane. LPS decreased alphaENaC mRNA and protein abundance, inferring that LPS inhibited alphaENaC gene expression. This correlated with the decrease in HSC activity, indicating that these channels, but not NSCs, were comprised of at least alphaENaC protein. LPS increased NF-kappaB DNA binding activity and phosphorylation of extracellular signal-related kinase (ERK)1/2, but decreased phosphorylation of ERK5 in H441 cells. Pretreatment of monolayers with PD98059 (20 microM) inhibited ERK1/2 phosphorylation, promoted phosphorylation of ERK5, increased alphaENaC protein abundance, and reversed the effect of LPS on I (sc) and the shift in amiloride sensitivity. Inhibitors of NF-kappaB activation were without effect. Taken together, our data indicate that LPS acts via ERK signaling pathways to decrease alphaENaC transcription, reducing HSC/ENaC channel abundance, activity, and transepithelial Na(+) transport in H441 airway epithelial cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Lipopolissacarídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Amilorida/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Canais Epiteliais de Sódio/genética , Flavonoides/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , NF-kappa B/metabolismo , Técnicas de Patch-Clamp , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia
2.
Am J Physiol Lung Cell Mol Physiol ; 295(5): L837-48, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18723760

RESUMO

Transepithelial transport of Na(+) across the lung epithelium via amiloride-sensitive Na(+) channels (ENaC) regulates fluid volume in the lung lumen. Activators of AMP-activated protein kinase (AMPK), the adenosine monophosphate mimetic AICAR, and the biguanide metformin decreased amiloride-sensitive apical Na(+) conductance (G(Na+)) in human H441 airway epithelial cell monolayers. Cell-attached patch-clamp recordings identified two distinct constitutively active cation channels in the apical membrane that were likely to contribute to G(Na+): a 5-pS highly Na(+) selective ENaC-like channel (HSC) and an 18-pS nonselective cation channel (NSC). Substituting NaCl with NMDG-Cl in the patch pipette solution shifted the reversal potentials of HSC and NSC, respectively, from +23 mV to -38 mV and 0 mV to -35 mV. Amiloride at 1 microM inhibited HSC activity and 56% of short-circuit current (I(sc)), whereas 10 microM amiloride partially reduced NSC activity and inhibited a further 30% of I(sc). Neither conductance was associated with CNG channels as there was no effect of 10 microM pimoside on I(sc), HSC, or NSC activity, and 8-bromo-cGMP (0.3-0.1 mM) did not induce or increase HSC or NSC activity. Pretreatment of H441 monolayers with 2 mM AICAR inhibited HSC/NSC activity by 90%, and this effect was reversed by the AMPK inhibitor Compound C. All three ENaC proteins were identified in the apical membrane of H441 monolayers, but no change in their abundance was detected after treatment with AICAR. In conclusion, activation of AMPK with AICAR in H441 cell monolayers is associated with inhibition of two distinct amiloride-sensitive Na(+)-permeable channels by a mechanism that likely reduces channel open probability.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Pulmão/citologia , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Amilorida/farmacologia , Aminoimidazol Carboxamida/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Células Epiteliais/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Metformina/farmacologia , Técnicas de Patch-Clamp , Permeabilidade/efeitos dos fármacos
3.
Br J Pharmacol ; 151(8): 1204-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17603555

RESUMO

BACKGROUND AND PURPOSE: AMP-activated protein kinase (AMPK) is activated by metformin, phenformin, and the AMP mimetic, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have completed an extensive study of the pharmacological effects of these drugs on AMPK activation, adenine nucleotide concentration, transepithelial amiloride-sensitive (I(amiloride)) and ouabain-sensitive basolateral (I(ouabain)) short circuit current in H441 lung epithelial cells. EXPERIMENTAL APPROACH: H441 cells were grown on permeable filters at air interface. I(amiloride), I(ouabain) and transepithelial resistance were measured in Ussing chambers. AMPK activity was measured as the amount of radiolabelled phosphate transferred to the SAMS peptide. Adenine nucleotide concentration was analysed by reverse phase HPLC and NAD(P)H autofluorescence was measured using confocal microscopy. KEY RESULTS: Phenformin, AICAR and metformin increased AMPK (alpha1) activity and decreased I(amiloride). The AMPK inhibitor Compound C prevented the action of metformin and AICAR but not phenformin. Phenformin and AICAR decreased I(ouabain) across H441 monolayers and decreased monolayer resistance. The decrease in I(amiloride) was closely related to I(ouabain) with phenformin, but not in AICAR treated monolayers. Metformin and phenformin increased the cellular AMP:ATP ratio but only phenformin and AICAR decreased cellular ATP. CONCLUSIONS AND IMPLICATIONS: Activation of alpha1-AMPK is associated with inhibition of apical amiloride-sensitive Na(+) channels (ENaC), which has important implications for the clinical use of metformin. Additional pharmacological effects evoked by AICAR and phenformin on I(ouabain), with potential secondary effects on apical Na+ conductance, ENaC activity and monolayer resistance, have important consequences for their use as pharmacological activators of AMPK in cell systems where Na+K+ATPase is an important component.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Complexos Multienzimáticos/efeitos dos fármacos , Fenformin/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Sódio/metabolismo , Proteínas Quinases Ativadas por AMP , Nucleotídeos de Adenina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Amilorida , Aminoimidazol Carboxamida/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Células Epiteliais , Canais Epiteliais de Sódio/efeitos dos fármacos , Fluorescência , Humanos , Pulmão , Microscopia Confocal , Complexos Multienzimáticos/metabolismo , Ouabaína , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA