Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Commun ; 15(1): 4390, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782989

RESUMO

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.


Assuntos
Ligação Proteica , Multimerização Proteica , Receptores Acoplados a Proteínas G , Receptores dos Hormônios Gastrointestinais , Secretina , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Secretina/metabolismo , Secretina/química , Secretina/genética , Ligantes , Animais , Humanos , Cricetulus , Células CHO , Mutação , Células HEK293
2.
Biochemistry ; 63(9): 1089-1096, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603770

RESUMO

Inhibition of calcitonin gene-related peptide (CGRP) or its cognate CGRP receptor (CGRPR) has arisen as a major breakthrough in the treatment of migraine. However, a second CGRP-responsive receptor exists, the amylin (Amy) 1 receptor (AMY1R), yet its involvement in the pathology of migraine is poorly understood. AMY1R and CGRPR are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with the calcitonin receptor (CTR) and the calcitonin receptor-like receptor (CLR), respectively. Here, we present the structure of AMY1R in complex with CGRP and Gs protein and compare it with the reported structures of the AMY1R complex with rat amylin (rAmy) and the CGRPR in complex with CGRP. Despite similar protein backbones observed within the receptors and the N- and C-termini of the two peptides bound to the AMY1R complexes, they have distinct organization in the peptide midregions (the bypass motif) that is correlated with differences in the dynamics of the respective receptor extracellular domains. Moreover, divergent conformations of extracellular loop (ECL) 3, intracellular loop (ICL) 2, and ICL3 within the CTR and CLR protomers are evident when comparing the CGRP bound to the CGRPR and AMY1R, which influences the binding mode of CGRP. However, the conserved interactions made by the C-terminus of CGRP to the CGRPR and AMY1R are likely to account for cross-reactivity of nonpeptide CGRPR antagonists observed at AMY1R, which also extends to other clinically used CGRPR blockers, including antibodies.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Microscopia Crioeletrônica , Proteína 1 Modificadora da Atividade de Receptores , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/química , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/química , Animais , Ratos , Modelos Moleculares , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Conformação Proteica
3.
Mol Pharmacol ; 105(5): 359-373, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458773

RESUMO

Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.


Assuntos
Doenças Metabólicas , Neuropeptídeos , Humanos , Receptores da Calcitonina/metabolismo , Proteínas Modificadoras da Atividade de Receptores , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Receptores de Peptídeos/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Obesidade
4.
Biochem Pharmacol ; 222: 116119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461904

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require ß-arrestins. While differences in GLP-1R trafficking and ß-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and ß-arrestin recruitment profiles using cells where endogenous ß-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical ß-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R ß-arrestin 1 and ß-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with ß-arrestin 1 recruitment more sensitive to GRK knockout than ß-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated ß-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases de Receptores Acoplados a Proteína G , Humanos , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
5.
J Med Chem ; 67(9): 7276-7282, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38465973

RESUMO

Glucagon-like peptide receptor (GLP-1R) agonists (e.g., semaglutide, liraglutide, etc.) are efficient treatment options for people with type 2 diabetes and obesity. The manufacturing method to produce semaglutide, a blockbuster GLP-1 drug on the market, involves multistep synthesis. The large peptide has a hydrophobic fatty acid side chain that makes it sparingly soluble, and its handling, purification, and large-scale production difficult. The growing demand for semaglutide that the manufacturer is not capable of addressing immediately triggered a worldwide shortage. Thus, we have developed a potential alternative analogue to semaglutide by replacing the hydrophobic fatty acid with a hydrophilic human complex-type biantennary oligosaccharide. Our novel glycoGLP-1 analogue was isolated in an ∼10-fold higher yield compared with semaglutide. Importantly, our glycoGLP-1 analogue possessed a similar GLP-1R activation potency to semaglutide and was biologically active in vivo in reducing glucose levels to a similar degree as semaglutide.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glicosilação , Humanos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Engenharia de Proteínas , Camundongos
6.
Biochemistry ; 63(5): 625-631, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38376112

RESUMO

The class A orphan G protein-coupled receptor (GPCR), GPR3, has been implicated in a variety of conditions, including Alzheimer's and premature ovarian failure. GPR3 constitutively couples with Gαs, resulting in the production of cAMP in cells. While tool compounds and several putative endogenous ligands have emerged for the receptor, its endogenous ligand, if it exists, remains a mystery. As novel potential drug targets, the structures of orphan GPCRs have been of increasing interest, revealing distinct modes of activation, including autoactivation, presence of constitutively activating mutations, or via cryptic ligands. Here, we present a cryo-electron microscopy (cryo-EM) structure of the orphan GPCR, GPR3 in complex with DNGαs and Gß1γ2. The structure revealed clear density for a lipid-like ligand that bound within an extended hydrophobic groove, suggesting that the observed "constitutive activity" was likely due to activation via a lipid that may be ubiquitously present. Analysis of conformational variance within the cryo-EM data set revealed twisting motions of the GPR3 transmembrane helices that appeared coordinated with changes in the lipid-like density. We propose a mechanism for the binding of a lipid to its putative orthosteric binding pocket linked to the GPR3 dynamics.


Assuntos
Lipídeos , Receptores Acoplados a Proteínas G , Ligantes , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo
7.
Nat Chem Biol ; 20(2): 162-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37537379

RESUMO

Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a 'bypass' secondary structural motif (residues S19-P25). This study explored potential tuning of peptide selectivity through modification to residues 19-22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar. We determined the structure and dynamics of San385-bound AMY3R, and San45 bound to AMY3R or CTR. San45, via its conjugated lipid at position 21, was anchored at the edge of the receptor bundle, enabling a stable, alternative binding mode when bound to the CTR, in addition to the bypass mode of binding to AMY3R. Targeted lipid modification may provide a single intervention strategy for design of long-acting, nonselective, Amy-based DACRAs with potential anti-obesity effects.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Receptores da Calcitonina , Humanos , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Obesidade , Lipídeos
8.
Structure ; 31(11): 1284-1288, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922863

RESUMO

As we celebrate the 30th anniversary of Structure, we have asked structural biologists about their expectations on how their respective fields are likely to develop in the next ten years in this collection of Voices.


Assuntos
Biologia Molecular , Biologia Molecular/tendências
9.
Nat Commun ; 14(1): 5440, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673901

RESUMO

The M4 muscarinic acetylcholine receptor (M4 mAChR) has emerged as a drug target of high therapeutic interest due to its expression in regions of the brain involved in the regulation of psychosis, cognition, and addiction. The mAChR agonist, xanomeline, has provided significant improvement in the Positive and Negative Symptom Scale (PANSS) scores in a Phase II clinical trial for the treatment of patients suffering from schizophrenia. Here we report the active state cryo-EM structure of xanomeline bound to the human M4 mAChR in complex with the heterotrimeric Gi1 transducer protein. Unexpectedly, two molecules of xanomeline were found to concomitantly bind to the monomeric M4 mAChR, with one molecule bound in the orthosteric (acetylcholine-binding) site and a second molecule in an extracellular vestibular allosteric site. Molecular dynamic simulations supports the structural findings, and pharmacological validation confirmed that xanomeline acts as a dual orthosteric and allosteric ligand at the human M4 mAChR. These findings provide a basis for further understanding xanomeline's complex pharmacology and highlight the myriad of ways through which clinically relevant ligands can bind to and regulate GPCRs.


Assuntos
Comportamento Aditivo , Humanos , Sítio Alostérico , Encéfalo , Cognição
10.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248726

RESUMO

Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.


Assuntos
Receptor Muscarínico M4 , Receptores Muscarínicos , Humanos , Acetilcolina/metabolismo , Regulação Alostérica , Sítio Alostérico , Microscopia Crioeletrônica , Ligantes , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo
11.
Bioconjug Chem ; 34(6): 1014-1018, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37192432

RESUMO

Exenatide was the first marketed GLP-1 receptor agonist for the treatment of type 2 diabetes. Modification to the chemical structure or the formulation has the potential to increase the stability of exenatide. We introduced human complex-type sialyloligosaccharide to exenatide at the native Asn28 position. The synthesis was achieved using both solid phase peptide synthesis (SPPS) and Omniligase-1-mediated chemoenzymatic ligation. The results demonstrate that glycosylation increases the proteolytic stability of exenatide while retaining its full biological activity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Exenatida , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes , Glicosilação , Peptídeo Hidrolases , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peçonhas
12.
Structure ; 31(6): 668-676.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148874

RESUMO

The parathyroid hormone (PTH) 1 receptor (PTH1R) is a G protein-coupled receptor (GPCR) that regulates skeletal development and calcium homeostasis. Here, we describe cryo-EM structures of the PTH1R in complex with fragments of the two hormones, PTH and PTH-related protein, the drug abaloparatide, as well as the engineered tool compounds, long-acting PTH (LA-PTH) and the truncated peptide, M-PTH(1-14). We found that the critical N terminus of each agonist engages the transmembrane bundle in a topologically similar fashion, reflecting similarities in measures of Gαs activation. The full-length peptides induce subtly different extracellular domain (ECD) orientations relative to the transmembrane domain. In the structure bound to M-PTH, the ECD is unresolved, demonstrating that the ECD is highly dynamic when unconstrained by a peptide. High resolutions enabled identification of water molecules near peptide and G protein binding sites. Our results illuminate the action of orthosteric agonists of the PTH1R.


Assuntos
Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo
13.
Endocr Rev ; 44(3): 492-517, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36546772

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and, as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in cryo-electron microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past 5 years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signaling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.


Assuntos
Hormônios Peptídicos , Receptores Acoplados a Proteínas G , Humanos , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Hormônios Peptídicos/metabolismo , Ligantes
14.
Nat Commun ; 13(1): 7013, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385145

RESUMO

The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular
15.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897648

RESUMO

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Sequência de Aminoácidos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
16.
Br J Pharmacol ; 179(19): 4617-4639, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35797341

RESUMO

We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.


Assuntos
Lipoxinas , Receptores de Lipoxinas , Células Endoteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipoxinas/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
17.
Chem Rev ; 122(17): 13989-14017, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35849490

RESUMO

Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.


Assuntos
Proteínas de Membrana , Proteínas de Membrana Transportadoras , Microscopia Crioeletrônica , Cristalografia por Raios X , Fenômenos Magnéticos , Proteínas de Membrana/química
18.
Mol Pharmacol ; 101(6): 400-407, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351821

RESUMO

Class B1 G protein-coupled receptors are activated by peptides, with amino-terminal regions critical for biologic activity. Although high resolution structures exist, understanding of key features of the peptide activation domain that drive signaling is limited. In the secretin receptor (SecR) structure, interactions are observed between peptide residues His1 and Ser2 and seventh transmembrane segment (TM7) receptor residue E373. We interrogated these interactions using systematic structure-activity analysis of peptide and receptor. His1 was critical for binding and cAMP responses, but its orientation was not critical, and substitution could independently modify affinity and efficacy. Ser2 was also critical, with all substitutions reducing peptide affinity and functional responses proportionally. Mutation of E373 to conserved acidic Asp (E373D), uncharged polar Gln (E373Q), or charge-reversed basic Arg (E373R) did not alter receptor expression, with all exhibiting secretin-dependent cAMP accumulation. All position 373 mutants displayed reduced binding affinities and cAMP potencies for many peptide analogs, although relative effects of position 1 peptides were similar whereas position 2 peptides exhibited substantial differences. The peptide including basic Lys in position 2 was active at SecR having acidic Glu in position 373 and at E373D while exhibiting minimal activity at those receptors in which an acidic residue is absent in this position (E373Q and E373R). In contrast, the peptide including acidic Glu in position 2 was equipotent with secretin at E373R while being much less potent than secretin at wild-type SecR and E373D. These data support functional importance of a charge-charge interaction between the amino-terminal region of secretin and the top of TM7. SIGNIFICANCE STATEMENT: This work refines our molecular understanding of the activation mechanisms of class B1 G protein-coupled receptors. The amino-terminal region of secretin interacts with the seventh transmembrane segment of its receptor with structural specificity and with a charge-charge interaction helping to drive functional activation.


Assuntos
Receptores Acoplados a Proteínas G , Secretina , Sequência de Aminoácidos , Mutagênese , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais , Secretina/química , Secretina/genética , Secretina/metabolismo , Relação Estrutura-Atividade
19.
Science ; 375(6587): eabm9609, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324283

RESUMO

Amylin receptors (AMYRs) are heterodimers of the calcitonin (CT) receptor (CTR) and one of three receptor activity-modifying proteins (RAMPs), AMY1R, AMY2R, and AMY3R. Selective AMYR agonists and dual AMYR/CTR agonists are being developed as obesity treatments; however, the molecular basis for peptide binding and selectivity is unknown. We determined the structure and dynamics of active AMYRs with amylin, AMY1R with salmon CT (sCT), AMY2R with sCT or human CT (hCT), and CTR with amylin, sCT, or hCT. The conformation of amylin-bound complexes was similar for all AMYRs, constrained by the RAMP, and an ordered midpeptide motif that we call the bypass motif. The CT-bound AMYR complexes were distinct, overlapping the CT-bound CTR complexes. Our findings indicate that activation of AMYRs by CT-based peptides is distinct from their activation by amylin-based peptides. This has important implications for the development of AMYR therapeutics.


Assuntos
Agonistas dos Receptores da Amilina/química , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/química , Animais , Microscopia Crioeletrônica , Humanos , Fenótipo , Conformação Proteica , Multimerização Proteica , Salmão
20.
Biochem Pharmacol ; 199: 114985, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35300966

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of membrane proteins and in recent years there has been a growing appreciation of the importance in understanding temporal aspects of GPCR behaviour, including the kinetics of ligand binding and downstream receptor mediated signalling. Class B1 GPCRs are activated by peptide agonists and are validated therapeutic targets for numerous diseases. However, the kinetics of ligand binding and how this is linked to downstream activation of signalling cascades is not routinely assessed in development of peptide agonists for this receptor class. The glucagon-like peptide-1 receptor (GLP-1R) is a prototypical class B1 GPCR and a validated target for treatment of global health burdens, including type 2 diabetes and obesity. In this study we examined the kinetics of different steps in GLP-1R activation and subsequent cAMP production mediated by a series of GLP-1R peptide agonists, including the ligand-receptor interaction, ligand-receptor-mediated G protein engagement and conformational change and cAMP production. Our results revealed GLP-1R peptide agonist dissociation kinetics (Koff), but not association kinetics (Kon), were positively correlated with the onset of receptor-G protein coupling/conformational change, onset of cAMP production and duration of cAMP signalling. Thus, this study advances the understanding of molecular events that couple GLP-1R ligand binding to intracellular signaling, with the findings likely to have implications for mechanistic understanding of agonist action at other related class B1 GPCRs.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Cinética , Ligantes , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA