Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 18(3): 717-746, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810561

RESUMO

This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This "world avoided" scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expected to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the "browning" of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.


Assuntos
Adaptação Biológica , Organismos Aquáticos/fisiologia , Mudança Climática , Perda de Ozônio , Raios Ultravioleta , Animais , Aquicultura , Organismos Aquáticos/efeitos da radiação , Ecossistema , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Peixes/fisiologia , Água Doce/análise , Camada de Gelo/química , Oceanos e Mares , Fotossíntese , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Zooplâncton/fisiologia
2.
Photochem Photobiol Sci ; 14(1): 108-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388554

RESUMO

Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280-315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Raios Ultravioleta , Animais , Organismos Aquáticos/efeitos dos fármacos , Peixes/fisiologia , Mamíferos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Photochem Photobiol Sci ; 11(1): 13-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22279621

RESUMO

The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015.


Assuntos
Mudança Climática , Ozônio/análise , Animais , Humanos , Raios Ultravioleta
4.
Photochem Photobiol Sci ; 9(3): 275-94, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20301813

RESUMO

The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with UV radiation and its effects on human health, animals, plants, biogeochemistry, air quality and materials. Since 2000, the analyses and interpretation of these effects have included interactions between UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will likely be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was that for 2006 (Photochem. Photobiol. Sci., 2007, 6, 201-332). In the years in between, the EEAP produces a less detailed and shorter progress report, as is the case for this present one for 2009. A full quadrennial report will follow for 2010.


Assuntos
Mudança Climática , Meio Ambiente , Ozônio/análise , Desenvolvimento de Programas , Ar/análise , Animais , Ecossistema , Humanos , Raios Ultravioleta/efeitos adversos
5.
Photochem Photobiol Sci ; 8(1): 13-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19256109

RESUMO

After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.


Assuntos
Clima , Conservação dos Recursos Naturais , Ozônio/química , Aerossóis , Animais , Humanos , Luz Solar
7.
Photochem Photobiol Sci ; 2(1): 39-50, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12659538

RESUMO

Aquatic ecosystems are a key component of the Earth's biosphere. A large number of studies document substantial impact of solar UV radiation on individual species, yet considerable uncertainty remains with respect to assessing impacts on ecosystems. Several studies indicate that the impact of increased UV radiation appears relatively low when considering overall ecosystem response, while, in contrast, effects on individual species show considerable responses. Ecosystem response to climate variability incorporates both synergistic and antagonistic processes with respect to UV-related effects, significantly complicating understanding and prediction at the ecosystem level. The impact of climate variability on UV-related effects often becomes manifest via indirect effects such as reduction in sea ice, changes in water column bio-optical characteristics, changes in cloud cover and shifts in oceanographic biogeochemical provinces.


Assuntos
Clima , Ecossistema , Luz Solar , Raios Ultravioleta , Água , Animais , Cianobactérias/efeitos da radiação , Eucariotos/efeitos da radiação , Ozônio , Plâncton/efeitos da radiação , Poaceae/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Zooplâncton/efeitos da radiação
8.
Oecologia ; 47(1): 56-60, 1980 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28309629

RESUMO

Effects of ultraviolet radiation on the development of metabolism of estuarine bacterial populations in laboratory microecosystems were studied. When compared with bacterial populations developing under an ultraviolet-deficient condition, the heterotrophic populations from microecosystems exposed to an ultraviolet-supplemented sprectrum displayed an overall decrease in total numbers, an increase in the proportion of pigmented cells, a decrease in the number of cellulolytic microorganisms and an increase in heterotrophic respiration. Ultraviolet radiation in the 290-320 nm waveband was the apparent stressful environmental parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA