Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12192, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806592

RESUMO

Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.


Assuntos
Odonatos , Estações do Ano , Transcriptoma , Animais , Odonatos/genética , Feminino , Larva/genética , Fenótipo , Diapausa de Inseto/genética , Diapausa/genética , Aptidão Genética
2.
Mol Ecol ; 32(21): 5771-5784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728172

RESUMO

Plasticity is an important component of the response of organism to environmental changes, but whether plasticity facilitates adaptation is still largely debated. Using transcriptomic and phenotypic data, we explored the evolution of ancestral plasticity during alpine colonization in Arabidopsis arenosa. We leveraged naturally replicated adaptation in four distinct mountain regions in Central Europe. We sampled seeds from ancestral foothill and independently formed alpine populations in each region and raised them in growth chambers under conditions approximating their natural environments. We gathered RNA-seq and genetic data of 48 and 63 plants and scored vegetative and flowering traits in 203 and 272 plants respectively. Then, we compared gene expression and trait values over two treatments differing in temperature and irradiance and elevations of origin and quantified the extent of ancestral and derived plasticity. At the transcriptomic level, initial plastic changes tended to be more reinforced than reversed in adapted alpine populations. Genes showing reinforcement were involved in the stress response, developmental processes and morphogenesis and those undergoing reversion were related to the stress response (light and biotic stress). At the phenotypic level, initial plastic changes in all but one trait were also reinforced supporting a facilitating role of phenotypic plasticity during colonization of an alpine environment. Our results contrasted with previous studies that showed generally higher reversion than reinforcement and supported the idea that ancestral plasticity tends to be reinforced in the context of alpine adaptation. However, plasticity may also be the source of potential maladaptation, especially at the transcriptomic level.

3.
Evol Appl ; 16(8): 1503-1515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622092

RESUMO

Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.

4.
Front Zool ; 20(1): 13, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032330

RESUMO

BACKGROUND: Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS: We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION: Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology.

5.
Insects ; 13(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555061

RESUMO

Copper is an essential metal that occurs chronically in the environment and affects the development and physiology of aquatic insects. In excess amounts, it can impair their nervous system and behaviour. We tested the anti-predatory behaviour of Cx. pipiens larvae after seven days exposure with several concentrations of copper up to 500 mg L-1. We measured responses to non- consumptive (predation cues) and consumptive predation (dragonfly larvae) across two generations. We also tested the accumulated effect of copper on AChE enzyme activity. We exposed half of treated and control larvae to predation cues (water with predator odour and crushed conspecifics) and the other half to water without predation cues. We evaluated total distance moved and velocity. Copper reduced the distance moved and velocity, with stronger effects in the second generation. Copper had no significant effect on larvae eaten by dragonflies. Copper inhibited the AChE enzyme across both generations at 500 µg L-1. Copper can affect the nervous system directly by inhibiting AChE activity, and possibly also by impairing the olfaction sensors of the larvae, resulting in larval inability to detect predation cues.

6.
Plants (Basel) ; 11(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235492

RESUMO

Functional and structural adjustments of plants in response to environmental factors, including those occurring in alpine habitats, can result in transient acclimation, plastic phenotypic adjustments and/or heritable adaptation. To unravel repeatedly selected traits with potential adaptive advantage, we studied parallel (ecotypic) and non-parallel (regional) differentiation in leaf traits in alpine and foothill ecotypes of Arabidopsis arenosa. Leaves of plants from eight alpine and eight foothill populations, representing three independent alpine colonization events in different mountain ranges, were investigated by microscopy techniques after reciprocal transplantation. Most traits clearly differed between the foothill and the alpine ecotype, with plastic adjustments to the local environment. In alpine populations, leaves were thicker, with altered proportions of palisade and spongy parenchyma, and had fewer trichomes, and chloroplasts contained large starch grains with less stacked grana thylakoids compared to foothill populations. Geographical origin had no impact on most traits except for trichome and stomatal density on abaxial leaf surfaces. The strong parallel, heritable ecotypic differentiation in various leaf traits and the absence of regional effects suggests that most of the observed leaf traits are adaptive. These trait shifts may reflect general trends in the adaptation of leaf anatomy associated with the colonization of alpine habitats.

7.
Am J Bot ; 109(2): 259-271, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35137947

RESUMO

PREMISE: Endoreduplication, nonheritable duplication of a nuclear genome, is widespread in plants and plays a role in developmental processes related to cell differentiation. However, neither ecological nor cytological factors influencing intraspecific variation in endoreduplication are fully understood. METHODS: We cultivated plants covering the range-wide natural diversity of diploid and tetraploid populations of Arabidopsis arenosa in common conditions to investigate the effect of original ploidy level on endoreduplication. We also raised plants from several foothill and alpine populations from different lineages and of both ploidies to test for the effect of elevation. We determined the endoreduplication level in leaves of young plants by flow cytometry. Using RNA-seq data available for our populations, we analyzed gene expression analysis in individuals that differed in endoreduplication level. RESULTS: We found intraspecific variation in endoreduplication that was mainly driven by the original ploidy level of populations, with significantly higher endoreduplication in diploids. An effect of elevation was also found within each ploidy, yet its direction exhibited rather regional-specific patterns. Transcriptomic analysis comparing individuals with high vs. low endopolyploidy revealed a majority of differentially expressed genes related to the stress and hormone response and to modifications especially in the cell wall and in chloroplasts. CONCLUSIONS: Our results support the general assumption of higher potential of low-ploidy organisms to undergo endoreduplication and suggest that endoreduplication is further integrated within the stress response pathways for a fine-tune adjustment of the endoreduplication process to their local environment.


Assuntos
Arabidopsis , Arabidopsis/genética , Diploide , Endorreduplicação/genética , Ploidias , Tetraploidia
8.
Mob DNA ; 12(1): 7, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639991

RESUMO

BACKGROUND: Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by various abiotic or biotic factors, there is a lack of general understanding on how environment influences the activity and diversity of TEs. Here, we combined common garden experiment with short-read sequencing to investigate genomic abundance and expression of 2245 consensus TE sequences (containing retrotransposons and DNA transposons) in an alpine environment in Arabidopsis arenosa. To disentangle general trends from local differentiation, we leveraged four foothill-alpine population pairs from different mountain regions. Seeds of each of the eight populations were raised under four treatments that differed in temperature and irradiance, two factors varying with elevation. RNA-seq analysis was performed on leaves of young plants to test for the effect of elevation and subsequently of temperature and irradiance on expression of TE sequences. RESULTS: Genomic abundance of the 2245 consensus TE sequences varied greatly between the mountain regions in line with neutral divergence among the regions, representing distinct genetic lineages of A. arenosa. Accounting for intraspecific variation in abundance, we found consistent transcriptomic response for some TE sequences across the different pairs of foothill-alpine populations suggesting parallelism in TE expression. In particular expression of retrotransposon LTR Copia (e.g. Ivana and Ale clades) and LTR Gypsy (e.g. Athila and CRM clades) but also non-LTR LINE or DNA transposon TIR MuDR consistently varied with elevation of origin. TE sequences responding specifically to temperature and irradiance belonged to the same classes as well as additional TE clades containing potentially stress-responsive elements (e.g. LTR Copia Sire and Tar, LTR Gypsy Reina). CONCLUSIONS: Our study demonstrated that the A. arenosa genome harbours a considerable diversity of TE sequences whose abundance and expression response varies across its native range. Some TE clades may contain transcriptionally active elements responding to a natural environmental gradient. This may further contribute to genetic variation between populations and may ultimately provide new regulatory mechanisms to face environmental challenges.

9.
Plant J ; 105(5): 1211-1224, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258160

RESUMO

Parallel adaptation results from the independent evolution of similar traits between closely related lineages and allows us to test to what extent evolution is repeatable. Similar gene expression changes are often detected but the identity of genes shaped by parallel selection and the causes of expression parallelism remain largely unknown. By comparing genomes and transcriptomes of four distinct foothill-alpine population pairs across four treatments, we addressed the genetic underpinnings, plasticity and functional consequences of gene expression parallelism in alpine adaptation. Seeds of eight populations of Arabidopsis arenosa were raised under four treatments that differed in temperature and irradiance, factors varying strongly with elevation. Parallelism in differential gene expression between the foothill and alpine ecotypes was quantified by RNA-seq in leaves of young plants. By manipulating temperature and irradiance, we also tested for parallelism in plasticity (i.e., gene-environment interaction, GEI). In spite of global non-parallel patterns transcriptome wide, we found significant parallelism in gene expression at the level of individual loci with an over-representation of genes involved in biotic stress response. In addition, we demonstrated significant parallelism in GEI, indicating a shared differential response of the originally foothill versus alpine populations to environmental variation across mountain regions. A fraction of genes showing expression parallelism also encompassed parallel outliers for genomic differentiation, with greater enrichment of such variants in cis-regulatory elements in some mountain regions. In summary, our results suggest frequent evolutionary repeatability in gene expression changes associated with the colonization of a challenging environment that combines constitutive expression differences and plastic interaction with the surrounding environment.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/genética , Ecossistema , Ecótipo , RNA-Seq/métodos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
10.
Front Plant Sci ; 11: 561526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363550

RESUMO

Parallel evolution provides powerful natural experiments for studying repeatability of evolution and genomic basis of adaptation. Well-documented examples from plants are, however, still rare, as are inquiries of mechanisms driving convergence in some traits while divergence in others. Arabidopsis arenosa, a predominantly foothill species with scattered morphologically distinct alpine occurrences is a promising candidate. Yet, the hypothesis of parallelism remained untested. We sampled foothill and alpine populations in all regions known to harbor the alpine ecotype and used SNP genotyping to test for repeated alpine colonization. Then, we combined field surveys and a common garden experiment to quantify phenotypic parallelism. Genetic clustering by region but not elevation and coalescent simulations demonstrated parallel origin of alpine ecotype in four mountain regions. Alpine populations exhibited parallelism in height and floral traits which persisted after two generations in cultivation. In contrast, leaf traits were distinctive only in certain region(s), reflecting a mixture of plasticity and genetically determined non-parallelism. We demonstrate varying degrees and causes of parallelism and non-parallelism across populations and traits within a plant species. Parallel divergence along a sharp elevation gradient makes A. arenosa a promising candidate for studying genomic basis of adaptation.

11.
Ann Bot ; 124(2): 255-268, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31185073

RESUMO

BACKGROUND AND AIMS: Polyploidy is an important driver of plant diversification and adaptation to novel environments. As a consequence of genome doubling, polyploids often exhibit greater colonizing ability or occupy a wider ecological niche than diploids. Although elevation has been traditionally considered as a key driver structuring ploidy variation, we do not know if environmental and phenotypic differentiation among ploidy cytotypes varies along an elevational gradient. Here, we tested for the consequences of genome duplication on genetic diversity, phenotypic variation and habitat preferences on closely related diploid and tetraploid populations that coexist along approx. 2300 m of varying elevation. METHODS: We sampled and phenotyped 45 natural diploid and tetraploid populations of Arabidopsis arenosa in one mountain range in Central Europe (Western Carpathians) and recorded abiotic and biotic variables at each collection site. We inferred genetic variation, population structure and demographic history in a sub-set of 29 populations genotyped for approx. 36 000 single nucleotide polymorphisms. KEY RESULTS: We found minor effects of polyploidy on colonization of alpine stands and low genetic differentiation between the two cytotypes, mirroring recent divergence of the polyploids from the local diploid lineage and repeated reticulation events among the cytotypes. This pattern was corroborated by the absence of ecological niche differentiation between the two cytotypes and overall phenotypic similarity at a given elevation. CONCLUSIONS: The case of A. arenosa contrasts with previous studies that frequently showed clear niche differentiation between cytotypes. Our work stresses the importance of considering genetic structure and past demographic processes when interpreting the patterns of ploidy distributions, especially in species that underwent recent polyploidization events.


Assuntos
Arabidopsis , Ecossistema , Europa (Continente) , Humanos , Ploidias , Poliploidia
12.
Ann Bot ; 122(3): 473-484, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29846507

RESUMO

Background and Aims: Over very short spatial scales, the habitat of a species can differ in multiple abiotic and biotic factors. These factors may impose natural selection on several traits and can cause genetic differentiation within a population. We studied multivariate genetic differentiation in a plant species of a sand dune landscape by linking environmental variation with differences in genotypic trait values and gene expression levels to find traits and candidate genes of microgeographical adaptation. Methods: Maternal seed families of Arabidopsis lyrata were collected in Saugatuck Dunes State Park, Michigan, USA, and environmental parameters were recorded at each collection site. Offspring plants were raised in climate chambers and exposed to one of three temperature treatments: regular occurrence of frost, heat, or constant control conditions. Several traits were assessed: plant growth, time to flowering, and frost and heat resistance. Key Results: The strongest trait-environment association was between a fast switch to sexual reproduction and weaker growth under frost, and growing in the open, away from trees. The second strongest association was between the trait combination of small plant size and early flowering under control conditions combined with large size under frost, and the combination of environmental conditions of growing close to trees, at low vegetation cover, on dune bottoms. Gene expression analysis by RNA-seq revealed candidate genes involved in multivariate trait differentiation. Conclusions: The results support the hypothesis that in natural populations, many environmental factors impose selection, and that they affect multiple traits, with the relative direction of trait change being complex. The results highlight that heterogeneity in the selection environment over small spatial scales is a main driver of the maintenance of adaptive genetic variation within populations.


Assuntos
Adaptação Fisiológica , Arabidopsis/genética , Variação Genética , Arabidopsis/fisiologia , Clima , Ecossistema , Meio Ambiente , Flores/genética , Flores/fisiologia , Deriva Genética , Genótipo , Temperatura Alta , Características de História de Vida , Fenótipo , Reprodução , Sementes/genética , Sementes/fisiologia , Seleção Genética
13.
PLoS One ; 10(6): e0131808, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110428

RESUMO

The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL) was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but-unexpectedly-they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Temperatura Baixa , Temperatura Alta , Folhas de Planta/fisiologia , Clima , Eletrólitos , Congelamento , Geografia , América do Norte , Estações do Ano , Sementes/fisiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA