RESUMO
This work developed a novel sustainable adsorbent (PF-Aq) prepared by the amino-functionalization of palm oil fibers (PF). XPS, SEM/EDS, TGA/DSC, and FT-IR techniques proved the successful functionalization of the PF with the amino group. The PF-Aq adsorbent presents a high adsorption capacity for phosphate and Cr(VI) ions. Adsorption kinetics of the ions onto the PF-Aq followed the general-order models, with 240- and 300-min equilibrium times for phosphate and Cr(VI), respectively. The Freundlich equilibrium model can explain the adsorption of phosphate and Cr(VI) on the PF-Aq. Besides, the maximum adsorption capacities were 151.07 mg g-1 for phosphate and 206.08 mg g-1 for Cr(VI). The best pH for the adsorption of both ions on PF-Aq was 4.0. Interestingly, adsorption was exothermic for phosphate and endothermic for Cr(VI). The adsorption capacities were reduced by 16% for phosphate and 10% for Cr(VI) after 5 adsorption-desorption cycles, demonstrating the good recyclability of the PF-Aq. It can be concluded that PF-Aq is a relevant adsorbent to uptake phosphate and Cr(VI) from water due to its high adsorption capacity, low cost, recyclability, availability, and fast kinetics. Finally, the excellent adsorption potential results from inserting amino groups in the PF, allowing electrostatic interactions between adsorbent and adsorbate.
Assuntos
Ânions , Cromo , Óleo de Palmeira , Fosfatos , Poluentes Químicos da Água , Adsorção , Fosfatos/química , Óleo de Palmeira/química , Cromo/química , Cinética , Ânions/química , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos , Concentração de Íons de HidrogênioRESUMO
Cocoa shell was modified whit sodium hydroxide (NaOH) and cationic surfactant cetyltrimethylammonium bromide (CTAB) to increase surface functionality, surface area, and positive charge density. The prepared adsorbent CC-OH-CTAB was used to remove indigo carmine (IC) and bromocresol green (BCG) dyes from water. The optimal pH for IC and BCG adsorption were 2 and 4, respectively. The equilibrium was attained after a contact time of 30 min for IC and 120 min for BCG. The maximum adsorption capacity (Qmax) of IC and BCG obtained was 85.1 mg g-1 and 192.7 mg g-1, respectively. The Liu isotherm model best described the equilibrium results. The adsorption kinetics model showed that IC and BCG adsorption onto CC-OH-CTAB followed the pseudo-first-order and pseudo-second-order model, respectively. The regeneration and reusability experiments indicated that CC-OH-CTAB had much stability and excellent performance meanwhile repeatedly used. Finally, the insertion of CTAB on the CC-OH surface proved to be an excellent way to improve the adsorption performance of this material concerning dyes.
Assuntos
Corantes , Poluentes Químicos da Água , Cetrimônio , Corantes/química , Adsorção , Compostos de Cetrimônio/química , Índigo Carmim , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de HidrogênioRESUMO
The aim of this work was to prepare a composite material based on cocoa cortex and sodium alginate and test it to remove Cu(II) ions in aqueous solution in batch conditions. The composite was characterized using elemental analysis, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA/DTG), and point of zero charge. The highest amount of adsorbed Cu(II) for the composite was 19.54 mg/g, i.e., 95.32% of an initial concentration of 100 mg/L. Under the same conditions, the cocoa cortex untreated exhibited extremely low adsorption, while when it was treated with hot soda, it adsorbed 13.67 mg/g. Adsorption by the composite reached the equilibrium after 220 min. Kinetic data analysis suggested that the process was governed by adsorption (pseudo-second-order model) and diffusion through macropores and/or mesopores (intra-particle model). The adsorption isotherm that best described the system was Langmuir's. The maximum adsorption capacity of Cu(II) was 76.92 mg/g. The values of the thermodynamic parameters indicated that the process was spontaneous, with ΔG° values between (- 7.886 and - 9.458 kJ/mol) and endothermic, with ΔH° = 7.728 kJ/mol. Graphical abstract.
Assuntos
Alginatos , Cobre/química , Poluentes Químicos da Água , Adsorção , Alginatos/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , ÁguaRESUMO
The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer.
Assuntos
Cacau/anatomia & histologia , Cacau/química , Compostos de Diazônio/química , Cacau/ultraestrutura , Lignina/química , Microscopia Eletrônica de Varredura , Espectrofotometria InfravermelhoRESUMO
It is difficult to eliminate phosphate from large volumes of water in batch mode using an adsorbent such as andosol. In a fixed-bed column, andosol has a very low permeability. In this study, andosol was mixed with bagasse to increase permeability. The mixture was then applied for the adsorption of phosphate in a fixed-bed column. Optimum and stable permeability was obtained with a 50/50 mixture of andosol and bagasse. The maximum adsorption capacity obtained was 4.18 mg/g for a column with a bed depth of 1.8 cm and a flow rate of 4 mL/min. The experimental data fit best to Thomas and Adam-Bohart models. These experimental results were applied in the treatment of natural phosphate-containing water from Yaoundé Municipal Lake in Cameroon. Column performance increased by 60% due to the presence of Ca(2+) and Mg(2+) in the natural water. These cations form complexes with phosphate at the andosol surface. The standard enthalpy 15.964 kj/mol indicated that phosphate adsorption on andosol-bagasse mixture was an endothermic process. Kinetic experiments demonstrated that phosphate adsorption fitted better with a pseudo-second-order model.
Assuntos
Celulose , Fosfatos/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Água/química , Purificação da Água/métodosRESUMO
The present study investigates a fixed-bed column by using magnetite-rich clay from Cameroon as an adsorbent for the removal of the Eriochrome Black T (EBT) from aqueous solution. The effect of various parameters such as bed depths and EBT concentrations was investigated. The Adams-Bohart, Thomas and Yoon-Nelson models were applied to adsorption under varying experimental conditions to predict the breakthrough curves and to evaluate the model parameters of the fixed-bed column that can be useful for the process design. The column regeneration studies were carried out for three different sorption-desorption cycles using HCl or NaOH solution at 1â M. The 1â M HCl solution was found to have the best bed regeneration capacity and the fixed-bed could be reused for several sorption-desorption cycles. The elution efficiency of EBT, 75â mgâ L(-1) was greater than 99.1% for all three cycles.