Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(11): 2070-2077, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173393

RESUMO

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a hybrid, ambient ionization source that combines the advantages of electrospray ionization and matrix-assisted laser desorption/ionization, making it a versatile tool for both high-throughput screening (HTS) and mass spectrometry imaging (MSI) studies. To expand the capabilities of the IR-MALDESI source, an entirely new architecture was designed to overcome the key limitations of the previous source. This next-generation (NextGen) IR-MALDESI source features a vertically mounted IR-laser, a planar translation stage with computerized sample height control, an aluminum enclosure, and a novel mass spectrometer interface plate. The NextGen IR-MALDESI source has improved user-friendliness, improved overall versatility, and can be coupled to numerous Orbitrap mass spectrometers to accommodate more research laboratories. In this work, we highlight the benefits of the NextGen IR-MALDESI source as an improved platform for MSI and direct analysis. We also optimize the NextGen MALDESI source component geometries to increase target ion abundances over a wide m/z range. Finally, documentation is provided for each NextGen IR-MALDESI part so that it can be replicated and incorporated into any lab space.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lasers
3.
Anal Chem ; 90(15): 9529-9537, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969236

RESUMO

Liquid chromatography (LC) prefractionation is often implemented to increase proteomic coverage; however, while effective, this approach is laborious, requires considerable sample amount, and can be cumbersome. We describe how interfacing a recently described high-field asymmetric waveform ion mobility spectrometry (FAIMS) device between a nanoelectrospray ionization (nanoESI) emitter and an Orbitrap hybrid mass spectrometer (MS) enables the collection of single-shot proteomic data with comparable depth to that of conventional two-dimensional LC approaches. This next generation FAIMS device incorporates improved ion sampling at the ESI-FAIMS interface, increased electric field strength, and a helium-free ion transport gas. With fast internal compensation voltage (CV) stepping (25 ms/transition), multiple unique gas-phase fractions may be analyzed simultaneously over the course of an MS analysis. We have comprehensively demonstrated how this device performs for bottom-up proteomics experiments as well as characterized the effects of peptide charge state, mass loading, analysis time, and additional variables. We also offer recommendations for the number of CVs and which CVs to use for different lengths of experiments. Internal CV stepping experiments increase protein identifications from a single-shot experiment to >8000, from over 100 000 peptide identifications in as little as 5 h. In single-shot 4 h label-free quantitation (LFQ) experiments of a human cell line, we quantified 7818 proteins with FAIMS using intra-analysis CV switching compared to 6809 without FAIMS. Single-shot FAIMS results also compare favorably with LC fractionation experiments. A 6 h single-shot FAIMS experiment generates 8007 protein identifications, while four fractions analyzed for 1.5 h each produce 7776 protein identifications.


Assuntos
Espectrometria de Mobilidade Iônica/instrumentação , Peptídeos/análise , Proteínas/análise , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Linhagem Celular , Humanos
4.
Eur J Mass Spectrom (Chichester) ; 23(4): 187-191, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29028401

RESUMO

A two-step approach was developed for the study of ion transport in an atmospheric pressure interface. In the first step, the flow in the interface was numerically simulated using the standard gas dynamic package ANSYS CFX 15.0. In the second step, the calculated fields of pressure, temperature, and velocity were imported into a custom-built software application for simulation of ion motion under the influence of both gas dynamic and electrostatic forces. To account for space charge effects in axially symmetric interfaces an analytical expression was used for the Coulomb force. For all other types of interfaces, an iterative approach for the Coulomb force computation was developed. The simulations show that the influence of the space charge is the main contributor to the loss of ion current in the heated capillary. In addition, the maximum ion current which can be transmitted through the heated capillary (0.58 mm inner diameter and 58.5 mm length) is limited to ∼6 nA for ions with m/z = 508 Da and with reduced ion mobility 1.05 cm2V-1s-1. This limit remains practically constant and independent of the ion current at the entrance of the capillary. For a particular ion type, this limit depends on its m/z ratio and ion mobility.

5.
Anal Chem ; 87(16): 8234-41, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26192074

RESUMO

Ion sampling from an electrospray ionization (ESI) source was improved by increasing gas conductance of the MS inlet by 4.3-fold. Converting the gas throughput (Q) into sensitivity improvement was dependent on ion desolvation and handling of the gas load. Desolvation was addressed by using a novel slot shaped inlet that exhibited desolvation properties identical to the 0.58 mm i.d capillary. An assay tailored for "small molecules" at high chromatographic flow rate (500 µL/min) yielded a compound dependent 6.5 to 14-fold signal gain while analysis at nano chromatographic flow rate (300 nL/min) showed 2 to 3.5-fold improvement for doubly charged peptides. Improvement exceeding the Q (4.3-fold) at high chromatographic flow rate was explained by superior sampling of the spatially dispersed ion spray when using the slot shaped capillary. Sensitivity improvement across a wide range of chromatographic flow rate confirmed no compromise in ion desolvation with the increase in Q. Another improvement included less overflow of gas into the mass analyzer from the foreline region owing to the slot shape of the capillary. By doubling the roughing pump capacity and operating the electrodynamic ion funnel (EDIF) at ∼4 Torr, a single pumping stage was sufficient to handle the gas load. The transport of solvent clusters from the LC effluent into the mass analyzer was prevented by a "wavy shaped" transfer quadrupole and was compared with a benchmark approach that delivered ions orthogonally into a differentially pumped dual EDIF at comparable gas Q.

6.
Mol Cell Proteomics ; 8(12): 2759-69, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19828875

RESUMO

Since its introduction a few years ago, the linear ion trap Orbitrap (LTQ Orbitrap) instrument has become a powerful tool in proteomics research. For high resolution mass spectrometry measurements ions are accumulated in the linear ion trap and passed on to the Orbitrap analyzer. Simultaneously with acquisition of this signal, the major peaks are isolated in turn, fragmented and recorded at high sensitivity in the linear ion trap, combining the strengths of both mass analyzer technologies. Here we describe a next generation LTQ Orbitrap system termed Velos, with significantly increased sensitivity and scan speed. This is achieved by a vacuum interface using a stacked ring radio frequency ion guide with 10-fold higher transfer efficiency in MS/MS mode and 3-5-fold in full scan spectra, by a dual pressure ion trap configuration, and by reduction of overhead times between scans. The first ion trap efficiently captures and fragments ions at relatively high pressure whereas the second ion trap realizes extremely fast scan speeds at reduced pressure. Ion injection times for MS/MS are predicted from full scans instead of performing automatic gain control scans. Together these improvements routinely enable acquisition of up to ten fragmentation spectra per second. Furthermore, an improved higher-energy collisional dissociation cell with increased ion extraction capabilities was implemented. Higher-collision energy dissociation with high mass accuracy Orbitrap readout is as sensitive as ion trap MS/MS scans in the previous generation of the instrument.


Assuntos
Espectrometria de Massas/instrumentação , Pressão , Proteômica/instrumentação , Análise de Sequência de Proteína/instrumentação , Sequência de Aminoácidos , Animais , Anidrases Carbônicas/química , Bovinos , Células HeLa , Humanos , Dados de Sequência Molecular , Peptídeos/química , Soroalbumina Bovina/química , Fatores de Tempo
7.
J Chem Phys ; 121(14): 6759-70, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15473732

RESUMO

We present a general method for determination of the photofragment K=4 state multipoles in an ion imaging experiment. These multipoles are important for determining the full density matrix for any photofragment with j(a)> or =2. They are expressed in terms of laboratory frame anisotropy parameters that have distinct physical origins and possess characteristic angular distributions. The explicit expression for the (2+1) resonant multiphoton ionization absorption signal for the case of arbitrarily polarized probe light is derived and a procedure for isolation of the rank-4 state multipoles from all others is shown. This treatment is applied to the case of O((1)D) produced in the 193 nm photodissociation of N2O. The results show nonzero values for all K=4 anisotropy parameters, indicating the complexity of the photodissociation dynamics in this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA