RESUMO
Assessment of occupational exposure to viruses is crucial to identify virus reservoirs and sources of dissemination at an early stage and to help prevent spread between employees and to the general population. Measuring workers' exposure can facilitate assessment of the effectiveness of protective and mitigation measures in place. The aim of this scoping review is to give an overview of available methods and those already implemented for airborne virus' exposure assessment in different occupational and indoor environments. The results retrieved from the different studies may contribute to the setting of future standards and guidelines to ensure a reliable risk characterization in the occupational environments crucial for the implementation of effective control measures. The search aimed at selecting studies between January 1st 2010 and June 30th 2023 in the selected databases. Fifty papers on virus exposure assessment fitted the eligibility criteria and were selected for data extraction. Overall, this study identified gaps in knowledge regarding virus assessment and pinpointed the needs for further research. Several discrepancies were found (transport temperatures, elution steps, ), as well as a lack of publication of important data related to the exposure conditions (contextual information). With the available information, it is impossible to compare results between studies employing different methods, and even if the same methods are used, different conclusions/recommendations based on the expert judgment have been reported due to the lack of consensus in the contextual information retrieved and/or data interpretation. Future research on the field targeting sampling methods and in the laboratory regarding the assays to employ should be developed bearing in mind the different goals of the assessment.
Assuntos
Microbiologia do Ar , Monitoramento Ambiental , Exposição Ocupacional , Monitoramento Ambiental/métodos , Humanos , Vírus/isolamento & purificaçãoRESUMO
Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest (RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 (±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in future epidemiological studies. Consequently, this will provide valuable insights into the public health implications of exposure to specific microbial agents.
Assuntos
Poluentes Atmosféricos , Gado , Animais , Suínos , Fazendas , Escherichia coli , Algoritmo Florestas Aleatórias , Aves Domésticas , Poluentes Atmosféricos/análiseRESUMO
BACKGROUND: Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS: In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS: Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS: Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Animais , Humanos , Fazendas , Gado , Endotoxinas/toxicidade , Agricultura , Poluição do Ar/análise , Poluentes Ambientais/análise , Pulmão/química , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Material Particulado/análiseRESUMO
Endotoxins released from poultry feces have been associated with impaired human health. Because endotoxins are released from gram-negative intestinal bacteria, it was hypothesized that dietary strategies may influence endotoxin excretion via modulation of gut microbiota. We therefore tested dietary strategies that could potentially reduce cloacal endotoxin levels in broiler chickens. One-day-old male Ross 308 (N = 1,344) broilers were housed in 48 pens (N = 8 pens/treatment, 28 chickens per pen) and fed 1 of 6 diets for 35 days (d) in a 3-phase feeding program: a basic diet (CON) that served as the reference diet, or basic diet supplemented with butyrate (BUT), inulin (INU), medium-chain fatty acids (MCFA) or Original XPC™LS (XPC), or a high-fiber-low-protein (HF-LP) diet. A significant (P < 0.05) increase in cloacal endotoxin concentration at d 35 was observed in BUT as compared to CON. Analysis of cloacal microbiota showed a trend (P < 0.07) for a higher gram-negative/gram-positive ratio and for a higher relative abundance of gram-negative bacteria at d 35 (P ≤ 0.08) in BUT and HF-LP as compared to CON. A significant (P < 0.05) increase in average daily gain (ADG) and improved feed conversion ratio (P < 0.05) were observed in MCFA during the grower phase (d 14-28), and a significant (P < 0.05) increase in average daily feed intake (ADFI) was observed in MCFA during d 0 to 28. Broilers fed HF-LP had a significantly (P < 0.05) higher FCR and lower ADG throughout the rearing period. No treatment effects were found on footpad dermatitis, but BUT had worst hock burn scores at d 35 (P < 0.01) and MCFA had worst cleanliness scores at d 21 but not at d 35 (treatment*age P < 0.05), while INU had better cleanliness as compared to CON at d 35 (P < 0.05). In conclusion, especially BUT and HF-LP were able to modulate resident microbiota and BUT also increased cloacal endotoxin levels, which was opposite to our hypothesis. The present study indicates that cloacal endotoxin release can be affected by the diet but further study is needed to find dietary treatments that can reduce cloacal endotoxin release.
Assuntos
Galinhas , Microbiota , Humanos , Animais , Masculino , Galinhas/microbiologia , Endotoxinas , Dieta/veterinária , Suplementos Nutricionais/análise , Dieta com Restrição de Proteínas/veterinária , Ácidos Graxos , Inulina , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
Airborne bacteria and endotoxin may affect asthma and allergies. However, there is limited understanding of the environmental determinants that influence them. This study investigated the airborne microbiomes in the homes of 1038 participants from five cities in Northern Europe: Aarhus, Bergen, Reykjavik, Tartu, and Uppsala. Airborne dust particles were sampled with electrostatic dust fall collectors (EDCs) from the participants' bedrooms. The dust washed from the EDCs' clothes was used to extract DNA and endotoxin. The DNA extracts were used for quantitative polymerase chain (qPCR) measurement and 16S rRNA gene sequencing, while endotoxin was measured using the kinetic chromogenic limulus amoebocyte lysate (LAL) assay. The results showed that households in Tartu and Aarhus had a higher bacterial load and diversity than those in Bergen and Reykjavik, possibly due to elevated concentrations of outdoor bacterial taxa associated with low precipitation and high wind speeds. Bergen-Tartu had the highest difference (ANOSIM R = 0.203) in ß diversity. Multivariate regression models showed that α diversity indices and bacterial and endotoxin loads were positively associated with the occupants' age, number of occupants, cleaning frequency, presence of dogs, and age of the house. Further studies are needed to understand how meteorological factors influence the indoor bacterial community in light of climate change.
Assuntos
Poluição do Ar em Ambientes Fechados , Microbiota , Animais , Cães , Endotoxinas/análise , Poluição do Ar em Ambientes Fechados/análise , RNA Ribossômico 16S , Poeira/análise , Bactérias/genéticaRESUMO
Methicillin-resistant strains of Staphylococcus aureus (MRSA) are resistant to most ß-lactam antibiotics. Pigs are an important reservoir of livestock-associated MRSA (LA-MRSA), which is genetically distinct from both hospital and community-acquired MRSA. Occupational exposure to pigs on farms can lead to LA-MRSA carriage by workers. There is a growing body of research on MRSA found in the farm environment, the airborne route of transmission, and its implication on human health. This study aims to directly compare two sampling methods used to measure airborne MRSA in the farm environment; passive dust sampling with electrostatic dust fall collectors (EDCs), and active inhalable dust sampling using stationary air pumps with Gesamtstaubprobenahme (GSP) sampling heads containing Teflon filters. Paired dust samples using EDCs and GSP samplers, totaling 87 samples, were taken from 7 Dutch pig farms, in multiple compartments housing pigs of varying ages. Total nucleic acids of both types of dust samples were extracted and targets indicating MRSA (femA, nuc, mecA) and total bacterial count (16S rRNA) were quantified using quantitative real-time PCRs. MRSA could be measured from all GSP samples and in 94% of the EDCs, additionally MRSA was present on every farm sampled. There was a strong positive relationship between the paired MRSA levels found in EDCs and those measured on filters (Normalized by 16S rRNA; Pearson's correlation coefficient r = 0.94, Not Normalized; Pearson's correlation coefficient r = 0.84). This study suggests that EDCs can be used as an affordable and easily standardized method for quantifying airborne MRSA levels in the pig farm setting.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Exposição Ocupacional , Infecções Estafilocócicas , Suínos , Humanos , Animais , Fazendas , RNA Ribossômico 16S , Poeira/análise , Infecções Estafilocócicas/veterinária , Exposição Ocupacional/análiseRESUMO
Residential microbial composition likely contributes to the development of lower respiratory tract infections (LRTI) among children, but the association is poorly understood. We aimed to study the relationship between the indoor airborne dust bacterial and fungal microbiota and childhood LRTI in Ibadan, Nigeria. Ninety-eight children under the age of five years hospitalized with LRTI were recruited and matched by age (±3 months), sex, and geographical location to 99 community-based controls without LRTI. Participants' homes were visited and sampled over a 14-day period for airborne house dust using electrostatic dustfall collectors (EDC). In airborne dust samples, the composition of bacterial and fungal communities was characterized by a meta-barcoding approach using amplicons targeting simultaneously the bacterial 16S rRNA gene and the internal-transcribed-spacer (ITS) region-1 of fungi in association with the SILVA and UNITE database respectively. A 100-unit change in house dust bacterial, but not fungal, richness (OR 1.06; 95%CI 1.03-1.10) and a 1-unit change in Shannon diversity (OR 1.92; 95%CI 1.28-3.01) were both independently associated with childhood LRTI after adjusting for other indoor environmental risk factors. Beta-diversity analysis showed that bacterial (PERMANOVA p < 0.001, R2 = 0.036) and fungal (PERMANOVA p < 0.001, R2 = 0.028) community composition differed significantly between homes of cases and controls. Pair-wise differential abundance analysis using both DESEq2 and MaAsLin2 consistently identified the bacterial phyla Deinococcota (Benjamini-Hochberg (BH) adjusted p-value <0.001) and Bacteriodota (BH-adjusted p-value = 0.004) to be negatively associated with LRTI. Within the fungal microbiota, phylum Ascomycota abundance (BH adjusted p-value <0.001) was observed to be directly associated with LRTI, while Basidiomycota abundance (BH adjusted p-value <0.001) was negatively associated with LRTI. Our study suggests that early-life exposure to certain airborne bacterial and fungal communities is associated with LRTI among children under the age of five years.
Assuntos
Poluição do Ar em Ambientes Fechados , Microbiota , Micobioma , Infecções Respiratórias , Humanos , Criança , Pré-Escolar , Lactente , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , RNA Ribossômico 16S , Microbiota/genética , Nigéria , Poeira/análise , Bactérias/genética , Fungos/genéticaRESUMO
During the COVID-19 pandemic, the importance of ventilation was widely stressed and new protocols of ventilation were implemented in school buildings worldwide. In the Netherlands, schools were recommended to keep the windows and doors open, and after a national lockdown more stringent measures such as reduction of occupancy were introduced. In this study, the actual effects of such measures on ventilation and thermal conditions were investigated in 31 classrooms of 11 Dutch secondary schools, by monitoring the indoor and outdoor CO2 concentration and air temperature, both before and after the lockdown. Ventilation rates were calculated using the steady-state method. Pre-lockdown, with an average occupancy of 17 students, in 42% of the classrooms the CO2 concentration exceeded the upper limit of the Dutch national guidelines (800 ppm above outdoors), while 13% had a ventilation rate per person (VRp) lower than the minimum requirement (6 l/s/p). Post-lockdown, the indoor CO2 concentration decreased significantly while for ventilation rates significant increase was only found in VRp, mainly caused by the decrease in occupancy (average 10 students). The total ventilation rate per classrooms, mainly induced by opening windows and doors, did not change significantly. Meanwhile, according to the Dutch national guidelines, thermal conditions in the classrooms were not satisfying, both pre- and post-lockdown. While opening windows and doors cannot achieve the required indoor environmental quality at all times, reducing occupancy might not be feasible for immediate implementation. Hence, more controllable and flexible ways for improving indoor air quality and thermal comfort in classrooms are needed.
RESUMO
Collecting and obtaining sufficient amount of airborne particles for multiple microbial component assessments can be challenging. A passive dust sampling device, the electrostatic dust fall collector (EDC) has been established for assessing airborne exposures including endotoxin and glucans. Recently, with advances in next-generation sequencing techniques, EDCs were used to collect microbial cells for DNA sequencing analysis to promote the study of airborne bacterial and fungal communities. However, low DNA yields have been problematic when employing passive sampling with EDC. To address this challenge, we attempted to increase the efficiency of extraction. We compared DNA extraction efficiency of bacterial components from EDCs captured on filters through filtration using five extraction techniques. By measuring the abundance, diversity and structure of bacterial communities using qPCR and amplicon sequencing targeting 16S rRNA genes, we found that two techniques outperformed the rest. Furthermore, we developed protocols to simultaneously extract both DNA and endotoxin from a single EDC cloth. Our technique promotes a high quality to price ratio and may be employed in large epidemiological studies addressing airborne bacterial exposure where a large number of samples is needed.
Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Poeira/análise , Endotoxinas/análise , DNA Bacteriano , Poluição do Ar em Ambientes Fechados/análise , RNA Ribossômico 16S , Monitoramento Ambiental/métodos , BactériasRESUMO
There is an ongoing debate on airborne transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a risk factor for infection. In this study, the level of SARS-CoV-2 in air and on surfaces of SARS-CoV-2 infected nursing home residents was assessed to gain insight in potential transmission routes. During outbreaks, air samples were collected using three different active and one passive air sampling technique in rooms of infected patients. Oropharyngeal swabs (OPS) of the residents and dry surface swabs were collected. Additionally, longitudinal passive air samples were collected during a period of 4 months in common areas of the wards. Presence of SARS-CoV-2 RNA was determined using RT-qPCR, targeting the RdRp- and E-genes. OPS, samples of two active air samplers and surface swabs with Ct-value ≤35 were tested for the presence of infectious virus by cell culture. In total, 360 air and 319 surface samples from patient rooms and common areas were collected. In rooms of 10 residents with detected SARS-CoV-2 RNA in OPS, SARS-CoV-2 RNA was detected in 93 of 184 collected environmental samples (50.5%) (lowest Ct 29.5), substantially more than in the rooms of residents with negative OPS on the day of environmental sampling (n = 2) (3.6%). SARS-CoV-2 RNA was most frequently present in the larger particle size fractions [>4 µm 60% (6/10); 1-4 µm 50% (5/10); <1 µm 20% (2/10)] (Fischer exact test P = 0.076). The highest proportion of RNA-positive air samples on room level was found with a filtration-based sampler 80% (8/10) and the cyclone-based sampler 70% (7/10), and impingement-based sampler 50% (5/10). SARS-CoV-2 RNA was detected in 10 out of 12 (83%) passive air samples in patient rooms. Both high-touch and low-touch surfaces contained SARS-CoV-2 genome in rooms of residents with positive OPS [high 38% (21/55); low 50% (22/44)]. In one active air sample, infectious virus in vitro was detected. In conclusion, SARS-CoV-2 is frequently detected in air and on surfaces in the immediate surroundings of room-isolated COVID-19 patients, providing evidence of environmental contamination. The environmental contamination of SARS-CoV-2 and infectious aerosols confirm the potential for transmission via air up to several meters.
Assuntos
COVID-19 , Exposição Ocupacional , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , RNA Viral , Casas de SaúdeRESUMO
BACKGROUND: In fall 2020 when schools in the Netherlands operated under a limited set of COVID-19 measures, we conducted outbreaks studies in four secondary schools to gain insight in the level of school transmission and the role of SARS-CoV-2 transmission via air and surfaces. METHODS: Outbreak studies were performed between 11 November and 15 December 2020 when the wild-type variant of SARS-CoV-2 was dominant. Clusters of SARS-CoV-2 infections within schools were identified through a prospective school surveillance study. All school contacts of cluster cases, irrespective of symptoms, were invited for PCR testing twice within 48 h and 4-7 days later. Combined NTS and saliva samples were collected at each time point along with data on recent exposure and symptoms. Surface and active air samples were collected in the school environment. All samples were PCR-tested and sequenced when possible. RESULTS: Out of 263 sampled school contacts, 24 tested SARS-CoV-2 positive (secondary attack rate 9.1%), of which 62% remained asymptomatic and 42% had a weakly positive test result. Phylogenetic analysis on 12 subjects from 2 schools indicated a cluster of 8 and 2 secondary cases, respectively, but also other distinct strains within outbreaks. Of 51 collected air and 53 surface samples, none were SARS-CoV-2 positive. CONCLUSION: Our study confirmed within school SARS-CoV-2 transmission and substantial silent circulation, but also multiple introductions in some cases. Absence of air or surface contamination suggests environmental contamination is not widespread during school outbreaks.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Estudos Prospectivos , Países Baixos/epidemiologia , Filogenia , Surtos de Doenças , Instituições AcadêmicasRESUMO
Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe clinical outcomes in animals and humans. Documenting the viral content of dust may provide information on the potential sources and movement of viruses. Here, we describe a dust sequencing strategy that provides detailed viral sequence characterization from farm dust samples and use this method to document the virus communities from chicken farm dust samples and paired feces collected from the same broiler farms in the Netherlands. From the sequencing data, Parvoviridae and Picornaviridae were the most frequently found virus families, detected in 85-100% of all fecal and dust samples with a large genomic diversity identified from the Picornaviridae. Sequences from the Caliciviridae and Astroviridae familes were also obtained. This study provides a unique characterization of virus communities in farmed chickens and paired farm dust samples and our sequencing methodology enabled the recovery of viral genome sequences from farm dust, providing important tracking details for virus movement between livestock animals and their farm environment. This study serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.
Assuntos
Galinhas , Poeira , Animais , Fazendas , Humanos , Metagenoma , MetagenômicaRESUMO
Indoor Air Quality (IAQ) is strongly associated with animal health and wellbeing. To identify possible problems of the indoor environment of macaques (Macaca spp.), we assessed the IAQ. The temperature (°C), relative humidity (%) and concentrations of inhalable dust (mg/m3), endotoxins (EU/m3), ammonia (ppm) and fungal aerosols were measured at stationary fixed locations in indoor enclosures of group-housed rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). In addition, the personal exposure of caretakers to inhalable dust and endotoxins was measured and evaluated. Furthermore, the air circulation was assessed with non-toxic smoke, and the number of times the macaques sneezed was recorded. The indoor temperature and relative humidity for both species were within comfortable ranges. The geometric mean (GM) ammonia, dust and endotoxin concentrations were 1.84 and 0.58 ppm, 0.07 and 0.07 mg/m3, and 24.8 and 6.44 EU/m3 in the rhesus and cynomolgus macaque units, respectively. The GM dust concentrations were significantly higher during the daytime than during the nighttime. Airborne fungi ranged between 425 and 1877 CFU/m3. Personal measurements on the caretakers showed GM dust and endotoxin concentrations of 4.2 mg/m3 and 439.0 EU/m3, respectively. The number of sneezes and the IAQ parameters were not correlated. The smoke test revealed a suboptimal air flow pattern. Although the dust, endotoxins and ammonia were revealed to be within accepted human threshold limit values (TLV), caretakers were exposed to dust and endotoxin levels exceeding existing occupational reference values.
RESUMO
BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3')-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman's rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains ('farm to fork') was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman's ρâ>â0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure.
Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Bovinos , Galinhas , Estudos Transversais , Farmacorresistência Bacteriana , Fezes , Genes Bacterianos , Humanos , Gado , Carne , RNA Ribossômico 16S/genética , SuínosRESUMO
Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy.
Assuntos
Farmacorresistência Bacteriana , Poeira , Fazendas , Animais , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana/genética , Poeira/análise , Europa (Continente) , SuínosRESUMO
OBJECTIVES: The occurrence and zoonotic potential of antimicrobial resistance (AMR) in pigs and broilers has been studied intensively in past decades. Here, we describe AMR levels of European pig and broiler farms and determine the potential risk factors. METHODS: We collected faeces from 181 pig farms and 181 broiler farms in nine European countries. Real-time quantitative PCR (qPCR) was used to quantify the relative abundance of four antimicrobial resistance genes (ARGs) [aph(3')-III, erm(B), sul2 and tet(W)] in these faeces samples. Information on antimicrobial use (AMU) and other farm characteristics was collected through a questionnaire. A mixed model using country and farm as random effects was performed to evaluate the relationship of AMR with AMU and other farm characteristics. The correlation between individual qPCR data and previously published pooled metagenomic data was evaluated. Variance component analysis was conducted to assess the variance contribution of all factors. RESULTS: The highest abundance of ARG was for tet(W) in pig faeces and erm(B) in broiler faeces. In addition to the significant positive association between corresponding ARG and AMU levels, we also found on-farm biosecurity measures were associated with relative ARG abundance in both pigs and broilers. Between-country and between-farm variation can partially be explained by AMU. Different ARG targets may have different sample size requirements to represent the overall farm level precisely. CONCLUSIONS: qPCR is an efficient tool for targeted assessment of AMR in livestock-related samples. The AMR variation between samples was mainly contributed to by between-country, between-farm and within-farm differences, and then by on-farm AMU.
Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Galinhas , Farmacorresistência Bacteriana , Fazendas , Fezes , Fatores de Risco , SuínosRESUMO
Objectives It is still not well established how occupational air pollutants affect the prognosis of asthma or chronic obstructive pulmonary disease (COPD). This study uses nationwide Danish registers and quantitative dust industry exposure matrices (IEM) for the farming and wood industries to estimate whether previous year dust exposure level impacts hospital readmissions for workers diagnosed with asthma or COPD. Methods We identified all individuals with a first diagnosis of either asthma (769 individuals) or COPD (342 individuals) between 1997 and 2007 and followed them until the next hospital admission for asthma or COPD, emigration, death or 31 December 2007. We included only individuals who worked in either the wood or farming industries at least one year during follow-up. We used logistic regression analysis to investigate associations between dust exposure level in the previous year and hospital readmission, adjusting for sex, age, time since first diagnosis, socioeconomic status, and labor force participation. Results Asthma readmissions for individuals with low and high dust exposure were increased [adjusted rate ratio (RR adj) 2.52, 95% confidence interval (CI) 1.45-4.40] and RR adj2.64 (95% CI 1.52-4.60), respectively. For COPD readmission, the risk estimates were RR adj1.36 (95% CI 0.57-3.23) for low and RR adj1.20 (95% CI 0.49-2.95) for high exposure level in the previous year. For asthma readmission, stratified analyses by type of dust exposure during follow-up showed increased risks for both wood dust [RR adj2.67 (95% CI 1.35-5.26) high exposure level] and farming dust [RR adj3.59 (95% CI 1.11-11.59) high exposure level]. No clear associations were seen for COPD readmissions. Conclusions This study indicates that exposure to wood or farm dust in the previous year increases the risk of hospital readmission for individuals with asthma but not for those with COPD.
Assuntos
Asma , Exposição Ocupacional , Doença Pulmonar Obstrutiva Crônica , Agricultura , Asma/epidemiologia , Poeira , Fazendas , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Readmissão do Paciente , MadeiraRESUMO
We examined Coxiella burnetii seroconversion rates by measuring C. burnetii IgG among 2 cohorts of veterinary students. During follow-up of 118 seronegative veterinary students, 23 students seroconverted. Although the clinical importance of the presence of antibodies is unknown, veterinary students should be informed about the potential risks for Q fever.
Assuntos
Coxiella burnetii , Febre Q , Anticorpos Antibacterianos , Humanos , Países Baixos/epidemiologia , Febre Q/epidemiologia , Febre Q/veterinária , Soroconversão , Estudos Soroepidemiológicos , EstudantesRESUMO
We report seven chicken megrivirus genome sequences identified in chicken fecal samples from a broiler farm in The Netherlands. The sequences were determined using metagenomic sequencing and would expand our understanding of the genome diversity of megriviruses.
RESUMO
BACKGROUND: High antimicrobial use (AMU) and antimicrobial resistance (AMR) in veal calves remain a source of concern. As part of the EFFORT project, the association between AMU and the abundance of faecal antimicrobial resistance genes (ARGs) in veal calves in three European countries was determined. METHODS: In 2015, faecal samples of veal calves close to slaughter were collected from farms located in France, Germany and the Netherlands (20 farms in France, 20 farms in the Netherlands and 21 farms in Germany; 25 calves per farm). Standardized questionnaires were used to record AMU and farm characteristics. In total, 405 faecal samples were selected for DNA extraction and quantitative polymerase chain reaction to quantify the abundance (16S normalized concentration) of four ARGs [aph(3')-III, ermB, sul2 and tetW] encoding for resistance to frequently used antimicrobials in veal calves. Multiple linear mixed models with random effects for country and farm were used to relate ARGs to AMU and farm characteristics. RESULTS: A significant positive association was found between the use of trimethoprim/sulfonamides and the concentration of sul2 in faeces from veal calves. A higher weight of calves on arrival at the farm was negatively associated with aph(3')-III and ermB. Lower concentrations of aph(3')-III were found at farms with non-commercial animals present. Furthermore, farms using only water for the cleaning of stables had a significantly lower abundance of faecal ermB and tetW compared with other farms. CONCLUSION: A positive association was found between the use of trimethoprim/sulfonamides and the abundance of sul2 in faeces in veal calves. Additionally, other relevant risk factors associated with ARGs in veal calves were identified, such as weight on arrival at the farm and cleaning practices.