RESUMO
Ozonation is widely used in high-income countries for water disinfection in centralized treatment facilities. New microplasma technology has reduced the energy requirements for ozone generation dramatically, such that a 15-watt solar panel is sufficient to produce small quantities of ozone. This technology has not been used previously for point-of-use drinking water treatment. We conducted a series of assessments of this technology, both in the laboratory and in homes of residents of a village in western Kenya, to estimate system efficacy and to determine if the solar-powered point-of-use water ozonation system appears safe and acceptable to end-users. In the laboratory, two hours of point-of-use ozonation reduced E. coli in 120 L of wastewater by a mean (standard deviation) of 2.3 (0.84) log-orders of magnitude and F+ coliphage by 1.54 (0.72). Based on laboratory efficacy, 10 families in Western Kenya used the system to treat 20 L of household stored water for two hours on a daily basis for eight weeks. Household stored water E. coli concentrations of >1000 most probable number (MPN)/100 mL were reduced by 1.56 (0.96) log removal value (LRV). No participants experienced symptoms of respiratory or mucous membrane irritation. Focus group research indicated that families who used the system for eight weeks had very favorable perceptions of the system, in part because it allowed them to charge mobile phones. Drinking water ozonation using microplasma technology may be a sustainable point-of-use treatment method, although system optimization and evaluations in other settings would be needed.
Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Escherichia coli , Quênia , Águas ResiduáriasRESUMO
Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs) that are disseminated into the environment via effluent. However, few studies have compared abundance, mobilization and selective pressures for ARGs in WWTPs as a function of variations in secondary treatment bioprocesses. We used shotgun metagenomics to provide a comprehensive analysis of ARG composition, relationship to mobile genetic elements and co-occurrences with antibiotic production genes (APGs) throughout two full-scale municipal WWTPs, one of which employs biofilm-based secondary treatment and another that uses a suspended growth system. Results showed that abundances of ARGs declined by over 90% per genome equivalent in both types of wastewater treatment processes. However, the fractions of ARGs associated with mobile genetic elements increased substantially between influent and effluent in each plant, indicating significant mobilization of ARGs throughout both treatment processes. Strong positive correlations between ARGs and APGs were found for the aminoglycoside antibiotic class in the suspended growth system and for the streptogramin antibiotic class in the biofilm system. The biofilm and suspended growth WWTPs exhibited similarities in ARG abundances, composition and mobilization trends. However, clear differences were observed for within-plant ARG persistence. These findings suggest that both biofilm and suspended growth-based WWTPs may promote genetic mobilization of persistent ARGs that are then disseminated in effluent to receiving water bodies.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Águas Residuárias/microbiologia , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Genes Bacterianos , Metagenômica , Águas Residuárias/análiseRESUMO
Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies.IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment.