Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38723658

RESUMO

Proteins on the surfaces of cells serve as physical connection points to bridge one cell with another, enabling direct communication between cells and cohesive structure. As biomedical research makes the leap from characterizing individual cells toward understanding the multicellular organization of the human body, the binding interactions between molecules on the surfaces of cells are foundational both for computational models and for clinical efforts to exploit these influential receptor pathways. To achieve this grander vision, we must assemble the full interactome of ways surface proteins can link together. This review investigates how close we are to knowing the human cell surface protein interactome. We summarize the current state of databases and systematic technologies to assemble surface protein interactomes, while highlighting substantial gaps that remain. We aim for this to serve as a road map for eventually building a more robust picture of the human cell surface protein interactome.

2.
Science ; 384(6695): 573-579, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696577

RESUMO

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Assuntos
Habenula , Neurogênese , Neurônios , Via de Sinalização Wnt , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Habenula/metabolismo , Habenula/embriologia , Neurônios/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Receptores Wnt/metabolismo , Receptores Wnt/genética , Encéfalo/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
3.
Elife ; 132024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666763

RESUMO

A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.


Assuntos
Proteínas de Membrana , Animais , Masculino , Camundongos , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imunoglobulinas/química , Interações Espermatozoide-Óvulo/fisiologia , Feminino
4.
mBio ; 15(5): e0085924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639536

RESUMO

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Leishmania donovani , Leishmaniose Visceral , Proteínas de Protozoários , Testes Sorológicos , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Animais , Humanos , Camundongos , Cães , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Testes Sorológicos/métodos , Biomarcadores/sangue , Feminino , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Camundongos Endogâmicos BALB C , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Sensibilidade e Especificidade , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia
5.
Sci Adv ; 10(8): eadk6352, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381819

RESUMO

Fertilization involves the recognition and fusion of sperm and egg to form a previously unidentified organism. In mammals, surface molecules on the sperm and egg have central roles, and while adhesion is mediated by the IZUMO1-JUNO sperm-egg ligand-receptor pair, the molecule/s responsible for membrane fusion remain mysterious. Recently, MAIA/FCRL3 was identified as a mammalian egg receptor, which bound IZUMO1 and JUNO and might therefore have a bridging role in gamete recognition and fusion. Here, we use sensitive assays designed to detect extracellular protein binding to investigate the interactions between MAIA and both IZUMO1 and JUNO. Despite using reagents with demonstrable biochemical activity, we did not identify any direct binding between MAIA/FCRL3 and either IZUMO1 or JUNO. We also observed no fusogenic activity of MAIA/FCRL3 in a cell-based membrane fusion assay. Our findings encourage caution in further investigations on the role played by MAIA/FCRL3 in fertilization.


Assuntos
Proteínas de Membrana , Receptores Fc , Animais , Humanos , Masculino , Imunoglobulinas/genética , Imunoglobulinas/análise , Imunoglobulinas/química , Ligantes , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Sêmen/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(5): e2316304121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261617

RESUMO

The discovery that Africans were resistant to infection by Plasmodium vivax (P. vivax) led to the conclusion that P. vivax invasion relied on the P. vivax Duffy Binding Protein (PvDBP) interacting with the Duffy Antigen Receptor for Chemokines (DARC) expressed on erythrocytes. However, the recent reporting of P. vivax infections in DARC-negative Africans suggests that the parasite might use an alternate invasion pathway to infect DARC-negative reticulocytes. To identify the parasite ligands and erythrocyte receptors that enable P. vivax invasion of both DARC-positive and -negative erythrocytes, we expressed region II containing the Duffy Binding-Like (DBL) domain of P. vivax erythrocyte binding protein (PvEBP-RII) and verified that the DBL domain binds to both DARC-positive and -negative erythrocytes. Furthermore, an AVidity-based EXtracelluar Interaction Screening (AVEXIS) was used to identify the receptor for PvEBP among over 750 human cell surface receptor proteins, and this approach identified only Complement Receptor 1 (CR1, CD35, or C3b/C4b receptor) as a PvEBP receptor. CR1 is a well-known receptor for P. falciparum Reticulocyte binding protein Homology 4 (PfRh4) and is present on the surfaces of both reticulocytes and normocytes, but its expression decreases as erythrocytes age. Indeed, PvEBP-RII bound to a subpopulation of both reticulocytes and normocytes, and this binding was blocked by the addition of soluble CR1 recombinant protein, indicating that CR1 is the receptor of PvEBP. In addition, we found that the Long Homology Repeat A (LHR-A) subdomain of CR1 is the only subdomain responsible for mediating the interaction with PvEBP-RII.


Assuntos
Malária Falciparum , Plasmodium vivax , Humanos , Receptores de Superfície Celular , Eritrócitos , Reticulócitos , Antígenos CD2 , Moléculas de Adesão Celular
7.
Nat Commun ; 14(1): 4619, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528099

RESUMO

Invasion of red blood cells (RBCs) by Plasmodium merozoites is critical to their continued survival within the host. Two major protein families, the Duffy binding-like proteins (DBPs/EBAs) and the reticulocyte binding like proteins (RBLs/RHs) have been studied extensively in P. falciparum and are hypothesized to have overlapping, but critical roles just prior to host cell entry. The zoonotic malaria parasite, P. knowlesi, has larger invasive merozoites and contains a smaller, less redundant, DBP and RBL repertoire than P. falciparum. One DBP (DBPα) and one RBL, normocyte binding protein Xa (NBPXa) are essential for invasion of human RBCs. Taking advantage of the unique biological features of P. knowlesi and iterative CRISPR-Cas9 genome editing, we determine the precise order of key invasion milestones and demonstrate distinct roles for each family. These distinct roles support a mechanism for phased commitment to invasion and can be targeted synergistically with invasion inhibitory antibodies.


Assuntos
Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Proteínas de Transporte/metabolismo , Parasitos/metabolismo , Malária/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Proteínas de Protozoários/metabolismo , Eritrócitos/parasitologia , Merozoítos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
8.
Nature ; 616(7955): 143-151, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991123

RESUMO

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Assuntos
Multiômica , Primeiro Trimestre da Gravidez , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular , Placenta/irrigação sanguínea , Placenta/citologia , Placenta/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Relações Materno-Fetais/fisiologia , Análise de Célula Única , Miométrio/citologia , Miométrio/fisiologia , Diferenciação Celular , Organoides/citologia , Organoides/fisiologia , Células-Tronco/citologia , Transcriptoma , Fatores de Transcrição/metabolismo , Comunicação Celular
9.
PLoS Biol ; 21(2): e3001959, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735681

RESUMO

The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Proteínas de Membrana/metabolismo
10.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656648

RESUMO

The molecular mechanism of sperm-egg fusion is a long-standing mystery in reproduction. Brukman and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202207147) now provide evidence that the sperm surface protein IZUMO1, which is essential for mammalian fertilization, can induce membrane fusion in cultured cells.


Assuntos
Fusão de Membrana , Proteínas de Membrana , Interações Espermatozoide-Óvulo , Animais , Masculino , Fertilização/genética , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sêmen/metabolismo , Interações Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Células Cultivadas
12.
PLoS Negl Trop Dis ; 16(9): e0010791, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129968

RESUMO

Trypanosoma vivax is a unicellular hemoparasite, and a principal cause of animal African trypanosomiasis (AAT), a vector-borne and potentially fatal livestock disease across sub-Saharan Africa. Previously, we identified diverse T. vivax-specific genes that were predicted to encode cell surface proteins. Here, we examine the immune responses of naturally and experimentally infected hosts to these unique parasite antigens, to identify immunogens that could become vaccine candidates. Immunoprofiling of host serum shows that one particular family (Fam34) elicits a consistent IgG antibody response. This gene family, which we now call Vivaxin, encodes at least 124 transmembrane glycoproteins that display quite distinct expression profiles and patterns of genetic variation. We focused on one gene (viv-ß8) that encodes one particularly immunogenic vivaxin protein and which is highly expressed during infections but displays minimal polymorphism across the parasite population. Vaccination of mice with VIVß8 adjuvanted with Quil-A elicits a strong, balanced immune response and delays parasite proliferation in some animals but, ultimately, it does not prevent disease. Although VIVß8 is localized across the cell body and flagellar membrane, live immunostaining indicates that VIVß8 is largely inaccessible to antibody in vivo. However, our phylogenetic analysis shows that vivaxin includes other antigens shown recently to induce immunity against T. vivax. Thus, the introduction of vivaxin represents an important advance in our understanding of the T. vivax cell surface. Besides being a source of proven and promising vaccine antigens, the gene family is clearly an important component of the parasite glycocalyx, with potential to influence host-parasite interactions.


Assuntos
Trypanosoma vivax , Vacinas , Animais , Formação de Anticorpos , Antígenos de Protozoários/genética , Imunoglobulina G/genética , Camundongos , Filogenia , Trypanosoma vivax/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
13.
Nature ; 608(7922): 397-404, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922511

RESUMO

The human immune system is composed of a distributed network of cells circulating throughout the body, which must dynamically form physical associations and communicate using interactions between their cell-surface proteomes1. Despite their therapeutic potential2, our map of these surface interactions remains incomplete3,4. Here, using a high-throughput surface receptor screening method, we systematically mapped the direct protein interactions across a recombinant library that encompasses most of the surface proteins that are detectable on human leukocytes. We independently validated and determined the biophysical parameters of each novel interaction, resulting in a high-confidence and quantitative view of the receptor wiring that connects human immune cells. By integrating our interactome with expression data, we identified trends in the dynamics of immune interactions and constructed a reductionist mathematical model that predicts cellular connectivity from basic principles. We also developed an interactive multi-tissue single-cell atlas that infers immune interactions throughout the body, revealing potential functional contexts for new interactions and hubs in multicellular networks. Finally, we combined targeted protein stimulation of human leukocytes with multiplex high-content microscopy to link our receptor interactions to functional roles, in terms of both modulating immune responses and maintaining normal patterns of intercellular associations. Together, our work provides a systematic perspective on the intercellular wiring of the human immune system that extends from systems-level principles of immune cell connectivity down to mechanistic characterization of individual receptors, which could offer opportunities for therapeutic intervention.


Assuntos
Comunicação Celular , Sistema Imunitário , Mapas de Interação de Proteínas , Comunicação Celular/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Leucócitos/química , Leucócitos/imunologia , Leucócitos/metabolismo , Ligação Proteica , Proteoma/imunologia , Proteoma/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo
14.
mBio ; 13(3): e0043322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420475

RESUMO

Visceral leishmaniasis is a deadly infectious disease caused by Leishmania donovani, a kinetoplastid parasite for which no licensed vaccine is available. To identify potential vaccine candidates, we systematically identified genes encoding putative cell surface and secreted proteins essential for parasite viability and host infection. We identified a protein encoded by LdBPK_061160 which, when ablated, resulted in a remarkable increase in parasite adhesion to tissue culture flasks. Here, we show that this phenotype is caused by the loss of glycosylphosphatidylinositol (GPI)-anchored surface molecules and that LdBPK_061160 encodes a noncatalytic component of the L. donovani GPI-mannosyltransferase I (GPI-MT I) complex. GPI-anchored surface molecules were rescued in the LdBPK_061160 mutant by the ectopic expression of both human genes PIG-X and PIG-M, but neither gene could complement the phenotype alone. From further sequence comparisons, we conclude that LdBPK_061160 is the functional orthologue of yeast PBN1 and mammalian PIG-X, which encode the noncatalytic subunits of their respective GPI-MT I complexes, and we assign LdBPK_061160 as LdPBN1. The LdPBN1 mutants could not establish a visceral infection in mice, a phenotype that was rescued by constitutive expression of LdPBN1. Although mice infected with the null mutant did not develop an infection, exposure to these parasites provided significant protection against subsequent infection with a virulent strain. In summary, we have identified the orthologue of the PBN1/PIG-X noncatalytic subunit of GPI-MT I in trypanosomatids, shown that it is essential for infection in a murine model of visceral leishmaniasis, and demonstrated that the LdPBN1 mutant shows promise for the development of an attenuated live vaccine. IMPORTANCE Visceral leishmaniasis is a deadly infectious disease caused by the parasites Leishmania donovani and Leishmania infantum. It remains a major global health problem, and there is no licensed highly effective vaccine. Molecules that are displayed on the surface of parasites are involved in host-parasite interactions and have important roles in immune evasion, making vaccine development difficult. One major way in which parasite surface molecules are tethered to the surface is via glycophosphatidylinositol (GPI) anchors; however, the enzymes required for all the biosynthetic steps in these parasites are not known. Here, we identified the enzyme required for an essential step in the GPI anchor-biosynthetic pathway in L. donovani, and we show that while parasites lacking this gene are viable in vitro, they are unable to establish infections in mice, a property we show can be exploited to develop a live genetically attenuated parasite vaccine.


Assuntos
Doenças Transmissíveis , Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Animais , Glicosilfosfatidilinositóis , Leishmania donovani/genética , Vacinas contra Leishmaniose/genética , Leishmaniose Visceral/parasitologia , Mamíferos , Camundongos , Vacinas Atenuadas
15.
PLoS Pathog ; 18(2): e1010364, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202447

RESUMO

Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease.


Assuntos
Leishmania donovani , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Parasitos , Animais , Cães , Leishmania donovani/genética , Camundongos
16.
Ann N Y Acad Sci ; 1511(1): 59-86, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35029310

RESUMO

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.


Assuntos
COVID-19 , Vacinas contra Influenza , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Saúde Global , Humanos , Pandemias/prevenção & controle , Vacinas/uso terapêutico
17.
J Infect Dis ; 225(8): 1435-1446, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32524140

RESUMO

BACKGROUND: Schistosomiasis is a major global health problem caused by blood-dwelling parasitic worms, which is currently tackled primarily by mass administration of the drug praziquantel. Appropriate drug treatment strategies are informed by diagnostics that establish the prevalence and intensity of infection, which, in regions of low transmission, should be highly sensitive. METHODS: To identify sensitive new serological markers of Schistosoma mansoni infections, we have compiled a recombinant protein library of parasite cell-surface and secreted proteins expressed in mammalian cells. RESULTS: Together with a time series of sera samples from volunteers experimentally infected with a defined number of male parasites, we probed this protein library to identify several markers that can detect primary infections with as low as 10 parasites and as early as 5 weeks postinfection. CONCLUSIONS: These new markers could be further explored as valuable tools to detect ongoing and previous S mansoni infections, including in endemic regions where transmission is low.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Biomarcadores , Humanos , Masculino , Mamíferos , Camundongos , Praziquantel/uso terapêutico , Proteínas Recombinantes , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
18.
Elife ; 102021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402426

RESUMO

Background: The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19. Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets. Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19. Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19. Funding: MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.


Individuals who become infected with the virus that causes COVID-19 can experience a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe illness and death. Key demographic factors, such as age, gender and race, are known to affect how susceptible an individual is to infection. However, molecular factors, such as unique gene mutations and gene expression levels can also have a major impact on patient responses by affecting the levels of proteins in the body. Proteins that are too abundant or too scarce may mean the difference between dying from or surviving COVID-19. Identifying the molecular factors in a host that affect how viruses can infect individuals, evade immune defences or trigger severe illness, could provide new ways to treat patients with COVID-19. Such factors are likely to remain constant, even when the virus mutates into new strains. Hence, insights would likely apply across all virus strains, including current strains, such as alpha and delta, and any new strains that may emerge in the future. Using such a 'natural experiment' approach, Karim et al. compared the genetic profiles of over 30,000 COVID-19 patients and a million healthy individuals. Nine proteins were found to have an impact on COVID-19 infection and disease severity. Four proteins were ranked as top priorities for potential treatment targets. One protein, called CD209 (also known as DC-SIGN), is involved in how the virus enters the host cells, and had one of the strongest associations with COVID-19. Two proteins, called IL-6R and FAS, were involved in the immune response and could be responsible for the immune over-activation often seen in severe COVID-19. Finally, one protein, called OAS1, formed part of the body's innate antiviral defence system and appeared to reduce susceptibility to COVID-19. Knowing more about the proteins that influence the severity of COVID-19 opens up new ways to predict, protect and treat patients who may have severe or fatal reactions to infection. Indeed, one of the identified proteins (IL-6R) had already been targeted in recent clinical trials with some encouraging results. Considering CD209 as a potential receptor for the virus could provide another avenue for therapeutics, similar to previously successful approaches to block the virus' known interaction with a receptor protein. Ultimately, this research could supply an entirely new set of treatment options to help combat the COVID-19 pandemic.


Assuntos
COVID-19/virologia , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , Moléculas de Adesão Celular , Humanos , Lectinas Tipo C , Proteoma , Receptores de Superfície Celular , Receptores Depuradores Classe A/genética , Índice de Gravidade de Doença , Receptor fas/genética
19.
Nature ; 595(7865): 96-100, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040257

RESUMO

Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma vivax/imunologia , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/prevenção & controle , Animais , Antígenos de Protozoários/química , Proteínas do Sistema Complemento/imunologia , Sequência Conservada/imunologia , Modelos Animais de Doenças , Feminino , Flagelos/química , Flagelos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/química , Fatores de Tempo , Trypanosoma vivax/química , Trypanosoma vivax/citologia , Tripanossomíase Africana/parasitologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
20.
Nat Commun ; 12(1): 1251, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623007

RESUMO

Dysfunction of embryo transport causes ectopic pregnancy which affects approximately 2% of conceptions in the US and Europe, and is the most common cause of pregnancy-related death in the first trimester. Embryo transit involves a valve-like tubal-locking phenomenon that temporarily arrests oocytes at the ampullary-isthmic junction (AIJ) where fertilisation occurs, but the mechanisms involved are unknown. Here we show that female mice lacking the orphan adhesion G-protein coupled receptor Adgrd1 are sterile because they do not relieve the AIJ restraining mechanism, inappropriately retaining embryos within the oviduct. Adgrd1 is expressed on the oviductal epithelium and the post-ovulatory attenuation of tubal fluid flow is dysregulated in Adgrd1-deficient mice. Using a large-scale extracellular protein interaction screen, we identified Plxdc2 as an activating ligand for Adgrd1 displayed on cumulus cells. Our findings demonstrate that regulating oviductal fluid flow by Adgrd1 controls embryo transit and we present a model where embryo arrest at the AIJ is due to the balance of abovarial ciliary action and the force of adovarial tubal fluid flow, and in wild-type oviducts, fluid flow is gradually attenuated through Adgrd1 activation to enable embryo release. Our findings provide important insights into the molecular mechanisms involved in embryo transport in mice.


Assuntos
Líquidos Corporais/fisiologia , Embrião de Mamíferos/metabolismo , Oviductos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reologia , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Células do Cúmulo/metabolismo , Epitélio/metabolismo , Feminino , Genótipo , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Ligantes , Masculino , Camundongos , Modelos Biológicos , Músculos/metabolismo , Mutação/genética , Oviductos/patologia , Oviductos/ultraestrutura , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA