Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Front Pharmacol ; 15: 1343755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720776

RESUMO

Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.

2.
Virol Sin ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38423254

RESUMO

Influenza A virus (IAV) shows an extensive host range and rapid genomic variations, leading to continuous emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission. This causes global pandemics and seasonal flu outbreaks, posing sustained threats worldwide. Thus, studying all IAVs' evolutionary patterns and underlying mechanisms is crucial for effective prevention and control. We developed FluTyping to identify IAV genotypes, to explore overall genetic diversity patterns and their restriction factors. FluTyping groups isolates based on genetic distance and phylogenetic relationships using entire genomes, enabling identification of each isolate's genotype. Three distinct genetic diversity patterns were observed: one genotype domination pattern comprising only H1N1 and H3N2 seasonal influenza subtypes, multi-genotypes co-circulation pattern including majority avian influenza subtypes and swine influenza H1N2, and hybrid-circulation pattern involving H7N9 and three H5 subtypes of influenza viruses. Furthermore, the IAVs in multi-genotypes co-circulation pattern showed region-specific dominant genotypes, implying the restriction of virus transmission is a key factor contributing to distinct genetic diversity patterns, and the genomic evolution underlying different patterns showed more influenced by host-specific factors. In summary, a comprehensive picture of the evolutionary patterns of overall IAVs is provided by the FluTyping's identified genotypes, offering important theoretical foundations for future prevention and control of these viruses.

3.
Cell Rep ; 43(2): 113796, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38367240

RESUMO

The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin ß1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.


Assuntos
Integrina beta1 , Neoplasias , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Concentração de Íons de Hidrogênio , Integrina beta1/genética , Metiltransferases/genética , Linfócitos T , Microambiente Tumoral
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343322

RESUMO

Vaccination stands as the most effective and economical strategy for prevention and control of influenza. The primary target of neutralizing antibodies is the surface antigen hemagglutinin (HA). However, ongoing mutations in the HA sequence result in antigenic drift. The success of a vaccine is contingent on its antigenic congruence with circulating strains. Thus, predicting antigenic variants and deducing antigenic clusters of influenza viruses are pivotal for recommendation of vaccine strains. The antigenicity of influenza A viruses is determined by the interplay of amino acids in the HA1 sequence. In this study, we exploit the ability of convolutional neural networks (CNNs) to extract spatial feature representations in the convolutional layers, which can discern interactions between amino acid sites. We introduce PREDAC-CNN, a model designed to track antigenic evolution of seasonal influenza A viruses. Accessible at http://predac-cnn.cloudna.cn, PREDAC-CNN formulates a spatially oriented representation of the HA1 sequence, optimized for the convolutional framework. It effectively probes interactions among amino acid sites in the HA1 sequence. Also, PREDAC-CNN focuses exclusively on physicochemical attributes crucial for the antigenicity of influenza viruses, thereby eliminating unnecessary amino acid embeddings. Together, PREDAC-CNN is adept at capturing interactions of amino acid sites within the HA1 sequence and examining the collective impact of point mutations on antigenic variation. Through 5-fold cross-validation and retrospective testing, PREDAC-CNN has shown superior performance in predicting antigenic variants compared to its counterparts. Additionally, PREDAC-CNN has been instrumental in identifying predominant antigenic clusters for A/H3N2 (1968-2023) and A/H1N1 (1977-2023) viruses, significantly aiding in vaccine strain recommendation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Estações do Ano , Estudos Retrospectivos , Antígenos Virais/genética , Redes Neurais de Computação , Aminoácidos
5.
Environ Sci Pollut Res Int ; 31(7): 11214-11227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217817

RESUMO

Cadmium (Cd) contamination is a widespread environmental issue. There is a lack of knowledge about the impacts of applying arbuscular mycorrhizal fungi (AMF) and biochar, either alone or in their combination, on alleviating Cd phytotoxicity in Ligustrum lucidum. Therefore, a pot experiment was conducted in a greenhouse, where L. lucidum seedlings were randomly subjected to four regimes of AMF treatments (inoculation with sterilized AMF, with Rhizophagus irregularis, Diversispora versiformis, alone or a mixture of these two fungi), and two regimes of biochar treatments (with or without rice-husk biochar), as well as three regimes of Cd treatments (0, 15, and 150 mg kg-1), to examine the responses of growth, photosynthetic capabilities, soil enzymatic activities, nutritional concentrations, and Cd absorption of L. lucidum plants to the interactive effects of AMF, biochar, and Cd. The results demonstrated that under Cd contaminations, AMF alone significantly increased plant total dry weight, soil pH, and plant nitrogen (N) concentration by 84%, 3.2%, and 13.2%, respectively, and inhibited soil Cd transferring to plant shoot by 42.2%; biochar alone significantly enhanced net photosynthetic rate, soil pH, and soil catalase of non-mycorrhizal plants by 16.4%, 9%, and 11.9%, respectively, and reduced the soil Cd transferring to plant shoot by 44.7%; the additive effect between AMF and biochar greatly enhanced plant total dry weight by 101.9%, and reduced the soil Cd transferring to plant shoot by 51.6%. Furthermore, dual inoculation with D. versiformis and R. irregularis conferred more benefits on plants than the single fungal species did. Accordingly, amending Cd-contaminated soil with the combination of mixed-fungi inoculation and biochar application performed the best than either AMF or biochar alone. These responses may have been attributed to higher mycorrhizal colonization, soil pH, biomass accumulation, and biomass allocation to the roots, as well as photosynthetic capabilities. In conclusion, the combined use of mixed-fungi involving D. versiformis and R. irregularis and biochar addition had significant synergistic effects on enhancing plant performance and reducing Cd uptake of L. lucidum plants in Cd-contaminated soil.


Assuntos
Carvão Vegetal , Ligustrum , Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Cádmio/análise , Plântula , Poluentes do Solo/análise , Raízes de Plantas , Solo
6.
Sci Total Environ ; 913: 169601, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159751

RESUMO

Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton biomass (chlorophyll a) and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops. Phytoplankton biomass exhibited the highest feedbacks with total inorganic nitrogen and ammonia and the lowest with nitrate. The feedbacks between phytoplankton biomass and environmental factors from 2000 to 2017 could be classified into two groups: the local environments (e.g., nutrients, pH, transparency, zooplankton biomass)-driven enhancement loops promoting the response of the phytoplankton biomass, and the climate (e.g., wind speed)-driven regulatory loops suppressing it. The two counterbalanced groups modified the emergent macroecological patterns. Our findings revealed that the causal feedback networks loosened significantly after 2007 following nutrient loading reduction and unsuccessful biomanipulation restoration attempts by stocking carp. The strength of enhancement loops underwent marked decreases leading to reduced phytoplankton responses to the tested drivers, while the climate (decreasing wind speed, warming winter)-driven regulatory loops increased- like a tug-of-war. To counteract the self-amplifying feedback loops, the present eutrophication mitigation efforts, especially nutrient reduction, should be continued, and introduction of alternative measures to indirectly regulate the critical components (e.g., pH, Secchi depth, zooplankton biomass) of the loops would be beneficial.


Assuntos
Mudança Climática , Lagos , Animais , Humanos , Retroalimentação , Clorofila A , Fitoplâncton/fisiologia , Biomassa , Eutrofização , Zooplâncton
7.
J Fungi (Basel) ; 9(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37888220

RESUMO

Salt spray is a major environmental issue in coastal areas. Cinnamomum camphora is an economically important tree species that grows in the coastal areas of southern China. Arbuscular mycorrhizal fungi (AMF) can alleviate the detrimental effects of abiotic stress on host plants. However, the mechanism by which AMF mitigates the adverse effects of salt spray on C. camphora remains unclear. A pot experiment was conducted in a greenhouse, where C. camphora seedlings were exposed to four AMF regimes (inoculation with sterilized fungi, with Glomus tortuosum, Funneliformis mosseae, either alone or in combination) and three salt spray regimes (applied with distilled water, 7, and 14 mg NaCl cm-2) in order to investigate the influence on root functional traits and plant growth. The results showed that higher salt spray significantly decreased the K+ uptake, K+/Na+ ratio, N/P ratio, total dry weight, and salinity tolerance of non-mycorrhizal plants by 37.9%, 71%, 27.4%, 12.7%, and 221.3%, respectively, when compared with control plants grown under non-salinity conditions. Mycorrhizal inoculation, particularly with a combination of G. tortuosum and F. mosseae, greatly improved the P uptake, total dry weight, and salinity tolerance of plants grown under higher salt spray conditions by 51.0%, 36.7%, and 130.9%, respectively, when compared with their counterparts. The results show that AMF can alleviate the detrimental effects of salt spray on C. camphora seedlings. Moreover, an enhanced uptake of K+ and P accounted for the resistance of the plants to salt spray. Therefore, pre-inoculation with a combination of G. tortuosum and F. mosseae to improve nutrient acquisition is a potential method of protecting C. camphora plants against salt spray stress in coastal areas.

8.
IEEE J Biomed Health Inform ; 27(12): 6029-6038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703167

RESUMO

Medical entity normalization is an important task for medical information processing. The Unified Medical Language System (UMLS), a well-developed medical terminology system, is crucial for medical entity normalization. However, the UMLS primarily consists of English medical terms. For languages other than English, such as Chinese, a significant challenge for normalizing medical entities is the lack of robust terminology systems. To address this issue, we propose a translation-enhancing training strategy that incorporates the translation and synonym knowledge of the UMLS into a language model using the contrastive learning approach. In this work, we proposed a cross-lingual pre-trained language model called TeaBERT, which can align synonymous Chinese and English medical entities across languages at the concept level. As the evaluation results showed, the TeaBERT language model outperformed previous cross-lingual language models with Acc@5 values of 92.54%, 87.14% and 84.77% on the ICD10-CN, CHPO and RealWorld-v2 datasets, respectively. It also achieved a new state-of-the-art cross-lingual entity mapping performance without fine-tuning. The translation-enhancing strategy is applicable to other languages that face the similar challenge due to the absence of well-developed medical terminology systems.


Assuntos
Idioma , Unified Medical Language System , Classificação Internacional de Doenças , Processamento de Linguagem Natural
9.
Nat Commun ; 14(1): 5541, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684223

RESUMO

Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Trofoblastos , Placenta , Organoides
10.
Front Immunol ; 14: 1223471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545533

RESUMO

Accurately identifying immune cell types in single-cell RNA-sequencing (scRNA-Seq) data is critical to uncovering immune responses in health or disease conditions. However, the high heterogeneity and sparsity of scRNA-Seq data, as well as the similarity in gene expression among immune cell types, poses a great challenge for accurate identification of immune cell types in scRNA-Seq data. Here, we developed a tool named sc-ImmuCC for hierarchical annotation of immune cell types from scRNA-Seq data, based on the optimized gene sets and ssGSEA algorithm. sc-ImmuCC simulates the natural differentiation of immune cells, and the hierarchical annotation includes three layers, which can annotate nine major immune cell types and 29 cell subtypes. The test results showed its stable performance and strong consistency among different tissue datasets with average accuracy of 71-90%. In addition, the optimized gene sets and hierarchical annotation strategy could be applied to other methods to improve their annotation accuracy and the spectrum of annotated cell types and subtypes. We also applied sc-ImmuCC to a dataset composed of COVID-19, influenza, and healthy donors, and found that the proportion of monocytes in patients with COVID-19 and influenza was significantly higher than that in healthy people. The easy-to-use sc-ImmuCC tool provides a good way to comprehensively annotate immune cell types from scRNA-Seq data, and will also help study the immune mechanism underlying physiological and pathological conditions.


Assuntos
COVID-19 , Influenza Humana , Humanos , Perfilação da Expressão Gênica/métodos , Análise da Expressão Gênica de Célula Única , COVID-19/genética , Algoritmos
11.
J Inflamm Res ; 16: 2521-2533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37337513

RESUMO

Purpose: Psoriasis (Ps) and leprosy are chronic inflammatory skin disorders, characterised by enhanced innate and adaptive immunity. Ps and leprosy rarely coexist. The molecular immune mechanism of the Ps and leprosy rarely coexistence is unclear. Patients and Methods: RNA-sequencing (RNA-seq) was performed on 20 patients with Ps, 5 adults with lepromatous leprosy (L-lep), and 5 patients with tuberculoid leprosy (T-lep) to analyse the differentially expressed genes (DEGs) between them. Moreover, the biological mechanism of Ps and leprosy was explored by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Ontology (GO) analysis, Gene Set Enrichment Analysis analysis, and protein-protein interaction (PPI) analyses. Finally, 13 DEGs of 10 skin biopsies of Ps patients, 6 samples of L-lep patients, 6 samples of T-lep patients and 5 healthy controls were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Results: The PPI network was constructed and primarily associated with immune response, IL-17 signalling, and Toll-like receptor pathway between Ps and leprosy. Th17 markers (interleukin (IL)-19, IL-20, IL-36A, IL-36G, IL-22, IL-17A, and lipocalin-2 (LCN2) had higher expression in Ps than in L-lep and T-lep, whereas macrophage biomarkers (CLEC4E and TREM2), SPP1, and dendritic cell (DC)-related hallmarks (ITGAX) and TNF-a had significantly lower expression across Ps and T-lep than in L-lep. Conclusion: To put it simply, Ps patients with IL-17A, IL-19, IL-20, IL-36A, IL-36G, and IL-22 in conjunction with LCN2 with up-graduated expression might be not susceptible to L-lep. However, high levels of CLEC4E, TREM2, and SPP1 in L-lep patients indicated that they unlikely suffered from Ps.

12.
Cell Discov ; 9(1): 59, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330497

RESUMO

Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.

13.
Angew Chem Int Ed Engl ; 62(39): e202306640, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37312604

RESUMO

Benzylamine electrooxidation reaction (BAOR) is a promising route to produce value-added, easy-separated benzonitrile, and effectively hoist H2 production. However, achieving excellent performance in low alkaline medium is a huge challenge. The performance is intimately correlated with effective coupling of HER and BAOR, which can be achieved by manipulating the d-electron structure of catalyst to regulate the active species from water. Herein, we constructed a biphasic Mo0.8 Ni0.2 N-Ni3 N heterojunction for enhanced bifunctional performance toward HER coupled with BAOR by customizing the d-band centers. Experimental and theoretical calculations indicate that charge transfer in the heterojunction causes the upshift of the d-band centers, which one side facilitates to decrease water activation energy and optimize H* adsorption on Mo0.8 Ni0.2 N for promoting HER activity, the other side favors to more easily produce and adsorb OH* from water for forming NiOOH on Ni3 N and optimizing adsorption energy of benzylamine, thus catalyzing BAOR effectively. Accordingly, it shows an industrial current density of 220 mA cm-2 at 1.59 V and high Faradaic efficiencies (>99 %) for H2 production and converting benzylamine to benzonitrile in 0.1 M KOH/0.5 M Na2 SO4 . This work guides the design of excellent bifunctional electrocatalysts for the scalable production of green hydrogen and value-added products.

14.
Virol Sin ; 38(4): 508-519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169126

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has seriously threatened global public health and caused huge economic losses. Omics studies of SARS-CoV-2 can help understand the interaction between the virus and host, thereby providing a new perspective in guiding the intervention and treatment of the SARS-CoV-2 infection. Since large amount of SARS-CoV-2 omics data have been accumulated in public databases, this study aimed to identify key host factors involved in SARS-CoV-2 infection through systematic integration of transcriptome and interactome data. By manually curating published studies, we obtained a comprehensive SARS-CoV-2-human protein-protein interactions (PPIs) network, comprising 3591 human proteins interacting with 31 SARS-CoV-2 viral proteins. Using the RobustRankAggregation method, we identified 123 multiple cell line common genes (CLCGs), of which 115 up-regulated CLCGs showed host enhanced innate immunity and chemotactic response signatures. Combined with network analysis, co-expression and functional enrichment analysis, we discovered four key host factors involved in SARS-CoV-2 infection: IFITM1, SERPINE1, DDX60, and TNFAIP2. Furthermore, SERPINE1 was found to facilitate SARS-CoV-2 replication, and can alleviate the endoplasmic reticulum (ER) stress induced by ORF8 protein through interaction with ORF8. Our findings highlight the importance of systematic integration analysis in understanding SARS-CoV-2-human interactions and provide valuable insights for future research on potential therapeutic targets against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Linhagem Celular , Transcriptoma , Perfilação da Expressão Gênica
15.
Viruses ; 15(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243244

RESUMO

The SARS-CoV-2 genomic data continue to grow, providing valuable information for researchers and public health officials. Genomic analysis of these data sheds light on the transmission and evolution of the virus. To aid in SARS-CoV-2 genomic analysis, many web resources have been developed to store, collate, analyze, and visualize the genomic data. This review summarizes web resources used for the SARS-CoV-2 genomic epidemiology, covering data management and sharing, genomic annotation, analysis, and variant tracking. The challenges and further expectations for these web resources are also discussed. Finally, we highlight the importance and need for continued development and improvement of related web resources to effectively track the spread and understand the evolution of the virus.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Genômica , Saúde Pública , Pesquisadores
16.
Environ Sci Technol ; 57(21): 8002-8014, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37204768

RESUMO

Eutrophication and exotic species invasion are key drivers of the global loss of biodiversity and ecosystem functions in lakes. We selected two exotic plants (Alternanthera philoxeroides and Myriophyllum aquaticum) and two native plants (Myriophyllum spicatum and Vallisneria spinulosa) to elucidate the effect of eutrophication on exotic plant invasiveness. We found that (1) elevated nutrient favored invasion of exotic species and inhibited growth of native plants. Species combinations and plant densities of native plants had limited effects on the resistance to invasion of the exotics. (2) A. philoxeroides featured the tightest connectivity among traits, which is consistent with its high competitive ability. Although eutrophication caused physiological stress to A. philoxeroides, it could effectively regulate enzyme activity and alleviate the stress. (3) M. aquaticum possessed strong tolerance to habitat disturbance and was highly disruptive to the surrounding plants. Eutrophication will exacerbate the adverse effects of M. aquaticum on the littoral ecosystem. (4) Nutrient enrichment reduced the biomass and relative growth rates of V. spinulosa and lowered phenolics and starch contents of M. spicatum, thereby making them more susceptible to habitat fluctuations. Overall, our study highlights how eutrophication alters the invasiveness of exotic plants and the resistance of native plants in the littoral zone, which is of relevance in a world with intensified human activities.


Assuntos
Ecossistema , Lagos , Humanos , Espécies Introduzidas , Plantas , Eutrofização
17.
Plants (Basel) ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904053

RESUMO

Water level rise is considered an environmental filter for the growth and reproduction of aquatic plants in lakes. Some emergent macrophytes can form floating mats, enabling them to escape from the negative effects of deep water. However, an understanding of which species can be uprooted and form floating mats easily and what factors affect these tendencies remains greatly elusive. We conducted an experiment to determine whether the monodominance of Zizania latifolia in the emergent vegetation community in Lake Erhai was related to its floating mat formation ability and to try to find the reasons for its floating mat formation ability during the continuous increase in water level over the past few decades. Our results showed that both the frequency and biomass proportion of Z. latifolia were greater among the plants on the floating mats. Furthermore, Z. latifolia was more likely to be uprooted than the other three previously dominant emergent species due to its smaller angle between the plant and the horizontal plane, rather than the root:shoot or volume:mass ratios. The dominance of Z. latifolia in the emergent community in Lake Erhai is due to its easier ability to become uprooted, allowing it to outperform other emergent species and become the single dominant emergent species under the environmental filter of deep water. The ability to uproot and form floating mats may be a competitive survival strategy for emergent species under the conditions of continuous significant water level rise.

18.
Food Sci Nutr ; 11(2): 1084-1095, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789058

RESUMO

Evidence on the association of 25-hydroxyvitamin D (25[OH]D) and obesity during the first 5 years of life is limited in China. The objective of this study was to examine the associations between weight, weight for age z score (ZWAZ), weight for length/height z score (ZWHZ), and body mass index for age z score (ZBMI) and 25(OH)D. This was a large population-based cross-sectional multicenter study in which the children aged 0-5 years were recruited from 12 children's healthcare centers by a stratified cluster random-sampling method in 10 cities of the Jiangsu province, China. The 25(OH)D concentration was determined by ELISA. A total of 5289 children were investigated. For 0-71 months children with obesity and nonobesity, the prevalence of vitamin D deficiency was 36.0% and 29.8%, and the 25(OH)D level was 59.8 and 64.0 nmol/L, respectively, and there were all significant difference. Compared with children with nonobesity, children with obesity had higher risk of vitamin D deficiency (OR [95% CI]: 1.33 [1.02, 1.72], p < .05), and had lower 25(OH)D level (ß = -3.84, 95% CI = -7.58, -0.09, p < .05). The results for children aged 24-71 months were similar to those for children aged 0-71 months. However, no significant difference was observed in children aged 0-23 months. Vitamin D deficiency was observed in children with greater adiposity during the first 5 years of life. However, the results mainly came from those in the age group of 2 to 5 years instead of the first 2 years in their lives.

19.
Heliyon ; 9(1): e12757, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685395

RESUMO

Plant invasive success is attributed to invaders' ecological advantages over their native neighbors. However, increasing evidence suggests that these advantages are expected to attenuate over time because of natural enemy accumulation, ecological evolution of native species and autotoxicity. We determined how an invasive Ageratina adenophora could remain its competitive advantages over time by avoiding its autotoxicity. Our results highlighted that the autotoxicity of A. adenophora in its invaded soil was reduced by some microbes. Moreover, an autotoxic allelochemical, 2-coumaric acid glucoside, detected in the invaded soil, demonstrated distinctly autotoxic effects on its seed germination and seedling growth. However, the autotoxic effects were greatly alleviated by a bacterium Bacillus cereus, accumulated by A. adenophora. Furthermore, the allelochemical could be almost completely degraded by B. cereus within 96 h. Accordingly, we speculate that A. adenophora could aggregate B. cereus to release its autotoxicity maintaining its competitive advantages over time.

20.
Emerg Infect Dis ; 29(2): 371-380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692451

RESUMO

The Omicron variant of SARS-CoV-2 has become dominant in most countries and has raised significant global health concerns. As a global commerce center, New York, New York, USA, constantly faces the risk for multiple variant introductions of SARS-CoV-2. To elucidate the introduction and transmission of the Omicron variant in the city of New York, we created a comprehensive genomic and epidemiologic analysis of 392 Omicron virus specimens collected during November 25-December 11, 2021. We found evidence of 4 independent introductions of Omicron subclades, including the Omicron subclade BA.1.1 with defining substitution of R346K in the spike protein. The continuous genetic divergence within each Omicron subclade revealed their local community transmission and co-circulation in New York, including both household and workplace transmissions supported by epidemiologic evidence. Our study highlights the urgent need for enhanced genomic surveillance and effective response planning for better prevention and management of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , New York/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Comércio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA