Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579965

RESUMO

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there are limited data comparing vaccine- and infection-induced neutralizing Abs (nAbs) against COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines (from December 2020 through August 2021) were matched with 30 naturally infected women (from March 2020 through January 2021) by gestational age of exposure. Neutralization activity against the 5 SARS-CoV-2 spike sequences was measured by a SARS-CoV-2-pseudotyped spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared with WT spike protein, these nAbs were less effective against the Delta and Mu spike variants. Vaccination during the third trimester induced higher cord-nAb levels at delivery than did infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared with infection during the first trimester. The transfer ratio (cord nAb level divided by maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicits effective nAbs with differing neutralization kinetics that are influenced by gestational time of exposure.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Idade Gestacional , Humanos , Mães , Testes de Neutralização , Vacinação
5.
Biomed Res Clin Pract ; 3(4)2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32913898

RESUMO

BACKGROUND: The increase in lung cancer screening is intensifying the need for a noninvasive test to characterize the many indeterminate pulmonary nodules (IPN) discovered. Correctly identifying non-cancerous nodules is needed to reduce overdiagnosis and overtreatment. Alternatively, early identification of malignant nodules may represent a potentially curable form of lung cancer. OBJECTIVE: To develop and validate a plasma-based multiplexed protein assay for classifying IPN by discriminating between those with a lung cancer diagnosis established pathologically and those found to be clinically and radiographically stable for at least one year. METHODS: Using a novel technology, we developed assays for plasma proteins associated with lung cancer into a panel for characterizing the risk that an IPN found on chest imaging is malignant. The assay panel was evaluated with a cohort of 277 samples, all from current smokers with an IPN 4-30 mm. Subjects were divided into training and test sets to identify a Support Vector Machine (SVM) model for risk classification containing those proteins and clinical factors that added discriminatory information to the Veteran's Affairs (VA) Clinical Factors Model. The algorithm was then evaluated in an independent validation cohort. RESULTS: Among the 97 validation study subjects, 68 were grouped as having intermediate risk by the VA model of which the SVM model correctly identified 44 (65%) of these intermediate-risk samples as low (n=16) or high risk (n=28). The SVM model negative predictive value (NPV) was 94% and its sensitivity was 94%. CONCLUSION: The performance of the novel plasma protein biomarker assay supports its use as a noninvasive risk assessment aid for characterizing IPN. The high NPV of the SVM model suggests its application as a rule-out test to increase the confidence of providers to avoid aggressive interventions for their patients for whom the VA model result is an inconclusive, intermediate risk.

6.
Biomed Res Rev ; 2(3)2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32923944

RESUMO

BACKGROUND: In the National Lung Screening Trial, 96.4% of nodules had benign etiology. To avoid unnecessary actions and exposure to harm, individuals with benign disease must be identified. We describe herein the analytical validation of a multi-analyte immunoassay for characterizing the risk that a lung nodule found on CT is malignant. Those at lower risk may be considered for serial surveillance to avoid unnecessary and potentially harmful procedures. While those nodules characterized at higher risk may be appropriate for more aggressive actions. OBJECTIVE: To validate the analytical performance of multiplexed plasma protein assays used in a novel test for lung nodule characterization. METHODS: A multiplexed immunoassay panel for the measurement of plasma proteins in current smokers who present with a lung nodule on CT scan was evaluated in a clinical testing laboratory. Assay analytical sensitivity, reproducibility, precision, and recovery of Epidermal Growth Factor Receptor (EGFR), Prosurfactant protein B (ProSB), and Tissue Inhibitor of Metalloproteinases 1 (TIMP1) from human EDTA plasma samples were evaluated across multiple runs, lots, and technicians. Interfering substances and sample pre-analytical storage conditions were evaluated for their effect on analyte recovery. The lung nodule risk score reproducibility was assessed across multiple lots. RESULTS: The assay sensitivities were 0.10 ng/mL EGFR, 0.02 ng/mL ProSB, and 0.29 ng/mL TIMP1 with over three orders of magnitude in the assay dynamic ranges. The assays and analytes are robust to pre-analytical sample handling and the plasma can be stored for up to 4 days at 4°C either when freshy collected or thawed after long-term storage at -80°C. Total imprecision after 20 days of testing remained under 9% for all three assays. Risk score variability remained within a ± 10% risk score range. CONCLUSIONS: The three protein assays comprising the multi-analyte plasma test for lung nodule characterization performed quite acceptably in a clinical laboratory.

8.
Per Med ; 12(2): 55-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29754535
11.
Clin Toxicol (Phila) ; 50(8): 733-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22888997

RESUMO

BACKGROUND: Gas chromatography (GC) and liquid chromatography (LC) coupled with mass spectrometry (MS) are widely used to confirm drug screening results and for urine screening in presumed intoxicated patients. These techniques are better suited to targeted analysis than to general unknown screening and, due to the complexity of testing, results are seldom available rapidly enough to contribute to the immediate care of the patient. High resolution (HR)/MS with time-of-flight (TOF) or orbitrap instruments offer potential advantages in clinical toxicology. COMPARISON OF GC-MS, LC-MS/MS AND LC-HR/MS: For unknown analyses, GC-MS and LC-MS/MS require comparison of full-scan spectra against preestablished libraries. Operation in full-scan mode greatly reduces sensitivity and some drugs present in low but significant concentrations may be missed. Selected ion monitoring (SIM) in GC/MS and selected reaction monitoring (SRM) in LC-MS/MS, where only targeted ions are monitored, increase sensitivity but require prior knowledge of what compound is to be measured. LC-HR/MS offers mass assignment with an accuracy of 0.001 atomic mass units (amu) compared with 1 amu in conventional MS. Tentative identification is thus directed to a very limited set of compounds (or even one unique compound) based on the exact molecular formula rather than a fragmentation pattern, since HR/MS can discriminate between compounds with the same nominal molecular mass. LC-MS/MS has clear advantages over GC/MS in ease and speed of sample preparation and the opportunities for its automation. LC-HR/MS is more suitable to clinical toxicology because the drugs present in a sample are rarely known a priori, and tentative identifications of unknowns can be made without the availability of a reference standard or a library spectrum. Blood can be used in preference to urine which is more relevant to the patient's current clinical situation. METHODS: A literature search was conducted using PUBMED for clinical toxicology, adulterants in illicit drugs and herbal supplements, and case reports using LC-TOF/MS and LC-HR/MS. Only 42 papers in English were identified in these searches. LC-HR/MS IN CLINICAL TOXICOLOGY: LC-HR/MS has been used to detect designer drugs, doping agents, (neurosteroids) and adulterants such as levamisole, a veterinary antihelmitic found in street cocaine, and pharmaceuticals in herbal medications marketed to contain only natural ingredients. LC-HR/MS has proved useful for cases where existing tests were unable to identify the cause of the intoxication. One patient suffered a drug-induced seizure which was originally thought to be caused by an herbal medication, but diphenhydramine was determined to be the culprit. In another, 5-oxoproline was identified as the cause of metabolic acidosis seen in chronic acetaminophen (paracetamol) use. LC-HR/MS has successfully identified medications that were mislabeled or misrepresented street drugs. In one case, medications sold as diazepam were determined to be glyburide instead. The identification of novel designer amines, stimulants found in "bath salts", and synthetic cannabinoids are well suited to LC-HR/MS. Dozens or even hundreds of possible compounds cannot realistically be tested on an individual basis by targeted LC-MS/MS or GC/MS analysis. CONCLUSIONS: LC-HR/MS offers unique opportunities for time-sensitive clinical analysis of blood samples from intoxicated patients and for comprehensive screening in a wide range of situations and materials. While the identification is not as definitive as that obtained by conventional fragmentation MS, the presumptive identification can be confirmed later with standards and spectral library matches. Optimum utilization of the presumptive diagnosis requires close collaboration between the laboratory analysts and their clinical counterparts.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Humanos , Preparações Farmacêuticas/análise , Detecção do Abuso de Substâncias/métodos , Toxicologia/métodos
12.
Genome Med ; 3(10): 64, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21970596

RESUMO

BACKGROUND: Pharmacogenetic testing holds major promise in allowing physicians to tailor therapy to patients based on genotype. However, there is little data on the impact of pharmacogenetic test results on patient and clinician choice of therapy. CYP2D6 testing among tamoxifen users offers a potential test case of the use of pharmacogenetic testing in the clinic. We evaluated the effect of CYP2D6 testing in clinical practice to determine whether genotype results affected choice of hormone therapy in a prospective cohort study. METHODS: Women planning to take or currently taking tamoxifen were considered eligible. Participants were enrolled in an informational session that reviewed the results of studies of CYP2D6 genotype on breast cancer recurrence. CYP2D6 genotyping was offered to participants using the AmpliChip CYP450 Test. Women were classified as either poor, intermediate, extensive or ultra-rapid metabolizers. Results were provided to clinicians without specific treatment recommendations. Follow-up was performed with a structured phone interview 3 to 6 months after testing to evaluate changes in medication. RESULTS: A total of 245 women were tested and 235 completed the follow-up survey. Six of 13 (46%) women classified as poor metabolizers reported changing treatment compared with 11 of 218 (5%) classified as intermediate, extensive or ultra-rapid metabolizers (P < 0.001). There was no difference in treatment choices between women classified as intermediate and extensive metabolizers. In multi-variate models that adjusted for age, race/ethnicity, educational status, method of referral into the study, prior knowledge of CYP2D6 testing, the patients' CYP2D6 genotype was the only significant factor that predicted a change in therapy (odds ratio 22.8; 95% confidence interval 5.2 to 98.8). Genetic testing did not affect use of co-medications that interact with CYP2D6. CONCLUSIONS: CYP2D6 genotype testing led to changes in therapy among poor metabolizers, even in the absence of definitive data that an alternative medicine improved outcomes. Pharmacogenetic testing can affect choice of therapy, even in the absence of definitive data on clinical impact.

13.
Clin Proteomics ; 8(1): 12, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21906384

RESUMO

Enzymes are critically important in the transportation, metabolism, and clearance of most therapeutic drugs used in clinical practice today. Many of these enzymes have significant genetic polymorphisms that affect the enzyme's rate kinetics. Regarding drug metabolism, specific polymorphisms to the cytochrome (CYP) P450 enzyme family are linked to phenotypes that describe reaction rates as "ultra", "intermediate", and "poor," as referenced to "extensive" metabolizers that are assigned to wildtype individuals. Activity scores is an alternate designation that provides more genotype-to-phenotype resolution. Understanding the relative change in enzyme activities or rate of clearance of specific drugs relative to an individual's genotypes is an important component in the interpretation of pharmacogenomic data for personalized medicine. Currently, the most relevant drug metabolizing enzymes are CYP 2D6, CYP 2C9, CYP 2C19, thiopurine methyltransferase (TPMT) and UDP-glucuronosyltransferase (UGT). Each of these enzymes is reactive to a host of different drug substrates. Pharmacogenomic tests that are in routine clinical practice include CYP 2C19 for clopidogrel, TPMT for thiopurine drugs, and UDP-1A1 for irinotecan. Other tests where there is considerable data but have not been widely implemented includes CYP 2C9 for warfarin, CYP 2D6 for tamoxifen and codeine, and CYP 2C19 for the proton pump inhibitors.

14.
Per Med ; 6(3): 315-327, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-29783510

RESUMO

Pharmacogenomics promises to improve therapeutic care by providing the right drug and dosage to the appropriate patient. Despite widespread interest in personalized medicine, the implementation of clinical pharmacogenomics has been slow. The major issue for clinicians is the lack of evidence that pharmacogenomic testing improves clinical outcomes and that testing is cost-effective. Only a few randomized clinical trials comparing pharmacogenomic testing with standard protocols have been conducted. The few studies that are available have either been underpowered or demonstrated only modest benefits. Nevertheless, if clinical decisions are made regarding therapeutic selection and dosing, pharmacogenomic testing may be justified. Issues for the clinical laboratories (who are responsible for providing pharmacogenomic services) to consider, include the availability of US FDA-cleared tests, the absence of reimbursement codes, the need for genotyping accuracy and the need to find clinical expertise to interpret laboratory results. From the clinical laboratory perspective, testing can be better implemented when these barriers are resolved or minimized. Clinical pharmacogenomics also offers a new field for translational research and teaching at various levels.

15.
Per Med ; 5(3): 225-232, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-29783498

RESUMO

BACKGROUND: Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. The CYP2C9*2 (430C>T), CYP2C9*3 (1075A>C) and VKORC1 -1639 G>A polymorphisms affect warfarin dose through altered metabolism (CYP2C9) and sensitivity (VKORC1). OBJECTIVE: We determined the frequencies of SNPs in the CYP2C9 and VKORC1 genes in a clinical outpatient population and the carrier prevalences for a variety of genotype combinations to gauge the impact of these polymorphisms on warfarin dosage using published algorithms. METHOD: A total of 127 patients from an outpatient clinic at Hartford Hospital (Hartford, CT, USA) were genotyped for five SNPs in the CYP2C9 gene and seven SNPs in the VKORC1 gene using Luminex® technology. RESULTS: The polymorphism frequencies were 10.2, 7.9 and 37.4% for the functionally deficient CYP2C9*2, CYP2C9*3 and VKORC1 -1639 G>A polymorphisms, respectively. Combining prevalence of combinatorial genotypes, 18% were carriers of both CYP2C9 and VKORC1 polymorphisms, 13% were CYP2C9 polymorphism carriers only, 42.5% were VKORC1 carriers only, and the remaining 27% were noncarriers for either gene. Based on published warfarin dosing algorithms, carriers of 1, 2, 3 and 4 functionally deficient polymorphisms predict reductions of 1.0 to 1.6, 2.0 to 2.9, 2.9 to 3.7, and 3.6 to 4.4 mg/day, respectively, in warfarin dose. CONCLUSION: Overall, 73% of the population carried at least one polymorphism predicting deficient warfarin metabolism or responsiveness and 18% were carriers for polymorphisms in both genes studied. Combinatorial genotyping of CYP2C9 and VKORC1 can allow for individualized dosing of warfarin amongst patients with gene polymorphisms potentially reducing the risk of accentuated responses and bleeding.

16.
Per Med ; 3(2): 131-137, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-29793288

RESUMO

Many drugs are metabolized by highly polymorphic cytochrome P450 (CYP) enzymes. Among these enzymes, members of the CYP2 family coded by the CYP2D6, CYP2C9 and CYP2C19 genes are best amenable to the precise prediction of an individual's innate capacity to metabolize drugs by DNA typing of inherited null and deficient alleles. We determined the frequency of these alleles and the prevalence of their carriers in a New England, USA, tertiary care center to assess underlying population genetic features for the practice of personalized medicine. We determined that 54, 25 and 27% are carriers of at least one deficient or null allele for the CYP2D6, CYP2C9 and CYP2C19 genes, respectively. Furthermore, 6% of individuals are carriers of two null alleles for CYP2D6 and are predicted to have no biochemical activity for this isoenzyme. These results support the implementation of DNA typing of CYP2 genes to diagnose adverse drug reactions and to prevent a substantial number of patients being prescribed drugs they cannot adequately metabolize.

17.
Pharmacogenomics ; 6(8): 865-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16296949

RESUMO

Statins are highly effective at reducing coronary disease risk. The main side effects of these medications are a variety of skeletal muscle complaints ranging from mild myalgia to frank rhabdomyolysis. To search for physiologic factors possibly influencing statin muscle toxicity, we screened for genetic associations with serum creatine kinase (CK) levels in 102 patients receiving statin therapy for hypercholesteremia. A total of 19 single nucleotide polymorphism (SNPs) were selected from ten candidate genes involved in vascular homeostasis. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. SNPs in the angiotensin II Type 1 receptor (AGTR1) and nitric oxide synthase 3 (NOS3) genes were significantly associated with CK activity. These results demonstrate a strong association between CK activity during statin treatment and variability in genes related to vascular function, and suggest that vascular smooth muscle function may contribute to the muscle side effects of statins.


Assuntos
Creatina Quinase/genética , Creatina Quinase/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Interpretação Estatística de Dados , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA