Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Nat Commun ; 11(1): 5953, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230146

RESUMO

Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Enxofre/metabolismo , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Origem da Vida , Oxirredução , Bombas de Próton/química , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimologia , Trocadores de Sódio-Hidrogênio/química
3.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859593

RESUMO

Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


Assuntos
Proteínas Arqueais/genética , Arseniato Redutases/genética , Regulação da Expressão Gênica em Archaea , Pyrococcus furiosus/genética , Thermoproteaceae/genética , Proteínas Arqueais/metabolismo , Arseniato Redutases/metabolismo , Arsênio/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/metabolismo
4.
Chem Sci ; 11(32): 8572-8581, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34123117

RESUMO

Metal-ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia 3+-C state, which contains a bridging hydride. Instead, the tautomeric Nia +-L states were observed. Overall, the results provided insight into complex metal-ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts.

5.
Extremophiles ; 24(1): 53-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31278423

RESUMO

The genome of the archaeon Pyrobaculum aerophilum (Topt ~ 100 °C) contains an operon (PAE2859-2861) encoding a putative pyranopterin-containing oxidoreductase of unknown function and metal content. These genes (with one gene modified to encode a His-affinity tag) were inserted into the fermentative anaerobic archaeon, Pyrococcus furiosus (Topt ~ 100 °C). Dye-linked assays of cytoplasmic extracts from recombinant P. furiosus show that the P. aerophilum enzyme is a thiosulfate reductase (Tsr) and reduces thiosulfate but not polysulfide. The enzyme (Tsr-Mo) from molybdenum-grown cells contains Mo (Mo:W = 9:1) while the enzyme (Tsr-W) from tungsten-grown cells contains mainly W (Mo:W = 1:6). Purified Tsr-Mo has over ten times the activity (Vmax = 1580 vs. 141 µmol min-1 mg-1) and twice the affinity for thiosulfate (Km = ~ 100 vs. ~ 200 µM) than Tsr-W and is reduced at a lower potential (Epeak = - 255 vs - 402 mV). Tsr-Mo and Tsr-W proteins are heterodimers lacking the membrane anchor subunit (PAE2861). Recombinant P. furiosus expressing P. aerophilum Tsr could not use thiosulfate as a terminal electron acceptor. P. furiosus contains five pyranopterin-containing enzymes, all of which utilize W. P. aerophilum Tsr-Mo is the first example of an active Mo-containing enzyme produced in P. furiosus.


Assuntos
Pyrobaculum , Pyrococcus furiosus , Sulfurtransferases , Tungstênio
6.
BMC Cancer ; 19(1): 852, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462229

RESUMO

BACKGROUND: Recently, evidence has emerged that palliative gastrectomy in patients with stage IV gastric cancer may offer some survival benefits. However, the decision whether to perform primary tumor surgery remains challenging for surgeons, and investigations into models that are predictive of prognosis are scarce. Current study aimed to develop and validate prognostic nomograms for patients with metastatic gastric adenocarcinoma treated with palliative gastrectomy. METHODS: The development dataset comprised 1186 patients from the Surveillance, Epidemiology, and End Results Program who were diagnosed with metastatic gastric adenocarcinoma in 2004-2011, while the validation dataset included 407 patients diagnosed in 2012-2015. Variables were incorporated into a Cox proportional hazards model to identify independent risk factors for survival. Both pre- and postoperative nomograms for predicting 1- or 2-year survival probabilities were constructed using the development dataset. The concordance index (c-index) and calibration curves were plotted to determine the accuracy of the nomogram models. Finally, the cut-off value of the calculated total scores based on preoperative nomograms was set and validated by comparing survival with contemporary cases without primary tumor surgery. RESULTS: Age, tumor size, location, grade, T stage, N stage, metastatic site, scope of gastrectomy, number of examined lymph node(s), chemotherapy and radiotherapy were risk factors of survival and were included as variables in the postoperative nomogram; the c-indices of the development and validation datasets were 0.701 (95% confidence interval [CI]: 0.693-0.710) and 0.699 (95% CI: 0.682-0.716), respectively. The preoperative nomogram incorporated age, tumor size, location, grade, depth of invasion, regional lymph node(s) status, and metastatic site. The c-indices for the internal (bootstrap) and external validation sets were 0.629 (95% CI: 0.620-0.639) and 0.607 (95% CI: 0.588-0.626), respectively. Based on the preoperative nomogram, patients with preoperative total score > 28 showed no survival benefit with gastrectomy compared to no primary tumor surgery. CONCLUSIONS: Our survival nomograms for patients with metastatic gastric adenocarcinoma undergoing palliative gastrectomy can assist surgeons in treatment decision-making and prognostication.


Assuntos
Adenocarcinoma/cirurgia , Gastrectomia/métodos , Nomogramas , Neoplasias Gástricas/cirurgia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Cuidados Paliativos , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Resultado do Tratamento
7.
Chem Commun (Camb) ; 55(39): 5579-5582, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30997456

RESUMO

A series of viologen related redox mediators of varying reduction potential has been characterized and their utility as electron shuttles between CdSe quantum dots and hydrogenase enzyme has been demonstrated. Tuning the mediator LUMO energy optimizes the performance of this hybrid photocatalytic system by balancing electron transfer rates of the shuttle.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Pontos Quânticos/química , Compostos de Cádmio/química , Catálise , Transporte de Elétrons , Hidrogênio/química , Luz , Pyrococcus furiosus/enzimologia , Teoria Quântica , Compostos de Selênio/química , Viologênios/química
8.
Clin Exp Rheumatol ; 37(3): 458-464, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30183598

RESUMO

OBJECTIVES: Increasing studies have indicated the association between adipokines and multiple autoimmune diseases. This study aimed to evaluate the mRNA expression levels of vaspin, adiponectin and adrenomedullin in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), as well as their clinical associations. METHODS: A total of 46 SLE patients and 51 normal controls were recruited. The three adipokines expression levels in PBMCs from SLE patients were measured by qRT-PCR, and their associations with major clinical and laboratory parameters of SLE patients were also analysed. RESULTS: Compared with normal controls, vaspin expression level in PBMCs was significantly decreased (p<0.001), whereas adiponectin expression level was significantly higher in SLE patients (p<0.001). There was no significant difference in adrenomedullin expression level between SLE patients and normal controls. Vaspin and adrenomedullin expression levels in more active SLE were significantly lower than those in less active SLE (p=0.012, p=0.046, respectively). No significant difference in these adipokine expression levels was observed between SLE patients with and without lupus nephritis (LN). There was also no significant association between mRNA levels of these adipokines and major clinical and laboratory parameters. CONCLUSIONS: Altered vaspin, adiponectin expression levels, and the associations between vaspin, adrenomedullin levels and disease activity in SLE patients suggested that these adipokines might play a role in SLE.


Assuntos
Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico , RNA Mensageiro/biossíntese , Adiponectina/metabolismo , Adrenomedulina/metabolismo , Estudos de Casos e Controles , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica , RNA Mensageiro/genética , Serpinas
9.
Methods Enzymol ; 613: 153-168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30509464

RESUMO

Hydrogenases catalyze the simplest of chemical reactions, the reversible interconversion of protons, electrons, and hydrogen gas. These enzymes have potential to be utilized for several biotechnological applications, such as in vitro hydrogen production from renewable materials and in enzyme-based fuel cells for electricity generation. Based on the metal content of their catalytic sites, hydrogenases are classified as either [NiFe], [FeFe], or mononuclear Fe enzymes, and [NiFe] hydrogenases are further categorized into five groups based on the sequences of the catalytic subunits. This chapter describes recombinant engineering strategies, purification procedures, and catalytic properties of two distinct types of [NiFe] hydrogenase from Pyrococcus furiosus, a microorganism with an optimal growth temperature of 100°C. These enzymes are termed soluble hydrogenase I (SHI, group 3) and membrane-bound hydrogenase (MBH, group 4). The two hydrogenases were affinity-tagged to facilitate their purification and the purified enzymes have been used for biochemical, mechanistic, and structural analyses. The results have provided us with new insights into how catalysis by SHI is achieved, which could also lead to the development of catalysts for economic hydrogen production, and knowledge of how MBH couples hydrogen gas production to conservation of energy in the form of an ion gradient. The methods described in this chapter provide the basis for these studies.


Assuntos
Proteínas Arqueais/metabolismo , Citoplasma/enzimologia , Hidrogenase/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/genética , Catálise , Domínio Catalítico , Hidrogenase/genética
10.
Protein Eng Des Sel ; 31(9): 337-344, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358873

RESUMO

The NADPH-dependent cytoplasmic [NiFe]-hydrogenase (SHI) from the hyperthermophile Pyrococcus furiosus, which grows optimally near 100°C, is extremely thermostable and has many in vitro applications, including cofactor generation and hydrogen production. In particular, SHI is used in a cell-free synthetic pathway that contains more than a dozen other enzymes and produces three times more hydrogen (12 H2/glucose) from sugars compared to cellular fermentations (4 H2/glucose). We previously reported homologous over-expression and rapid purification of an affinity-tagged (9x-His) version of SHI, which is a heterotetrameric enzyme. However, about 30% of the enzyme that was purified contained an inactive trimeric form of SHI lacking the catalytic [NiFe]-containing subunit. Herein, we constructed a strain of P. furiosus that contained a second set of the eight genes involved in the maturation of the catalytic subunit and insertion of the [NiFe]-site, along with a second set of the four genes encoding the SHI structural subunits. This resulted in a 40% higher yield of the purified affinity-tagged enzyme and the content of the inactive trimeric form decreased to 5% of the total protein. These results bode well for the future production of active SHI for both basic and applied purposes.


Assuntos
Hidrogenase/genética , Pyrococcus furiosus/genética , Proteínas Recombinantes de Fusão/genética , Reatores Biológicos , Cromatografia de Afinidade , Hidrogenase/isolamento & purificação , Hidrogenase/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
11.
J Biol Chem ; 293(43): 16687-16696, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30181217

RESUMO

Hyperthermophilic archaea contain a hydrogen gas-evolving,respiratory membrane-bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 µm) and Vmax values (12 µmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo' = -480 mV) to reduce sulfane sulfur (Eo' -260 mV) and cleave organic (RS n R, n ≥ 3) and anionic polysulfides (S n2-, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.


Assuntos
Proteínas Arqueais/metabolismo , Membrana Celular/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Sulfetos/química , Proteínas Arqueais/genética , Domínio Catalítico , Complexo I de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Oxirredução , Oxirredutases/genética , Pyrococcus furiosus/crescimento & desenvolvimento
12.
FEMS Microbiol Rev ; 42(5): 543-578, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945179

RESUMO

Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.


Assuntos
Archaea/fisiologia , Biotecnologia/tendências , Temperatura Alta , Engenharia Metabólica/tendências , Archaea/genética , Microbiologia Industrial/tendências
13.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754813

RESUMO

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Assuntos
Proteínas Arqueais/metabolismo , Hidrogenase/metabolismo , Pyrococcus furiosus/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Evolução Molecular , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Mutagênese , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Sódio/química , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
14.
Front Plant Sci ; 9: 192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541080

RESUMO

To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

15.
Oncotarget ; 9(19): 14862-14881, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29599912

RESUMO

This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become 'partners in crime', contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity.

16.
Metab Eng ; 44: 246-252, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28974378

RESUMO

Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H2/L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H2-based mass and an electricity density of more than 3000Wh/kg of starch.


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Hidrogênio/química , Engenharia Metabólica/métodos , Modelos Químicos , Amido/química , Água/química , Oxirredução , Proteínas Recombinantes/química
17.
Nat Commun ; 8: 16110, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726794

RESUMO

Iron-sulfur clusters are ubiquitous in biology and function in electron transfer and catalysis. They are assembled from iron and cysteine sulfur on protein scaffolds. Iron is typically stored as iron oxyhydroxide, ferrihydrite, encapsulated in 12 nm shells of ferritin, which buffers cellular iron availability. Here we have characterized IssA, a protein that stores iron and sulfur as thioferrate, an inorganic anionic polymer previously unknown in biology. IssA forms nanoparticles reaching 300 nm in diameter and is the largest natural metalloprotein complex known. It is a member of a widely distributed protein family that includes nitrogenase maturation factors, NifB and NifX. IssA nanoparticles are visible by electron microscopy as electron-dense bodies in the cytoplasm. Purified nanoparticles appear to be generated from 20 nm units containing ∼6,400 Fe atoms and ∼170 IssA monomers. In support of roles in both iron-sulfur storage and cluster biosynthesis, IssA reconstitutes the [4Fe-4S] cluster in ferredoxin in vitro.


Assuntos
Proteínas de Bactérias/ultraestrutura , Proteínas Ferro-Enxofre/ultraestrutura , Nanopartículas/ultraestrutura , Pyrococcus furiosus/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Microscopia Eletrônica , Nanopartículas/química , Pyrococcus furiosus/química
18.
Oncol Rep ; 38(2): 886-898, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656201

RESUMO

The aims of the present study were to determine whether the changes in density and location of CD68-positive and CD206-positive macrophages contribute to progression of hepatocellular carcinoma (HCC) and to evaluate prognostic values of these cells in post-surgical patients. A retrospective study involving 268 HCC patients was conducted. CD68-positive and CD206-positive macrophage infiltration in HCC tissues and adjacent tissues was examined by immunohistochemistry (IHC) and the relationship between the clinicopathological features and prognosis was analyzed. Receiver operating characteristics (ROC) curve was used to calculate diagnostic accuracy. There was an increase in CD68-positive and CD206-positive macrophage infiltration in adjacent tumor tissues compared with tumor tissues. ROC curve identified their optimal diagnostic cut-off values. The survival analysis showed that increased CD68 expression in adjacent tissues conferred superior overall survival (OS) and disease-free survival (DFS), while increase of CD206 in tumor yielded inferior OS and DFS. Cox regression analysis suggested both CD68-positive macrophages in adjacent area and intratumor CD206-positive macrophages as independent prognostic biomarkers for post-surgical HCC patients. Finally, a combination of CD68/CD206 and HBV-positive further improved prognostic stratification, especially in DFS. These results provide the first evidence for region- and subset-dependent involvement of CD68 and CD206 cells in HCC progression. A combination of CD68/CD206 density and HBV-positivity improves further predictive value for post-operative recurrence of HCC. Quantification of CD68/CD206 macrophages and their distribution can be exploited for better postsurgical management of HCC patients. These findings provide a basis for developing novel treatment strategies aimed at re-educating macrophages in tumor microenvironment.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Carcinoma Hepatocelular/genética , Lectinas Tipo C/genética , Neoplasias Hepáticas/genética , Lectinas de Ligação a Manose/genética , Receptores de Superfície Celular/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Progressão da Doença , Intervalo Livre de Doença , Feminino , Vírus da Hepatite B/patogenicidade , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Receptor de Manose , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/virologia , Prognóstico
19.
PLoS One ; 12(2): e0172108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192490

RESUMO

The safety of measles vaccination is of great interest and importance to public health practice and the general society. We have analyzed the adverse events following immunization (AEFIs) of currently used measles-containing vaccines (including live attenuated measles vaccine, live attenuated measles and rubella combined vaccine, live attenuated measles and mumps combined vaccine, live attenuated Measles, Mumps and Rubella Combined Vaccine) in Anhui Province, China. From 2009 to 2014, 9.9 million doses of measles-containing vaccines were administrated and 1893 AEFIs were found (191.4 per million doses), of which, 33 serious AEFIs (3.3 per million vaccine doses) were reported. 59.4% (1124 cases) were male cases, and 85.1% (1611 cases) occurred in persons aged < 1 year. 93.3% (1766 cases) occurred at the first dose of vaccination and 95.9% (1815 cases) were found within 3 days after vaccination. This study presents up-to-date data and suggests that the measles-containing vaccines used in Anhui Province of China are safe.


Assuntos
Imunização/métodos , Vacina contra Sarampo/imunologia , Sarampo/imunologia , Vigilância de Produtos Comercializados/métodos , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Anafilaxia/etiologia , Povo Asiático , China , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etnologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Encefalite/etiologia , Humanos , Imunização/efeitos adversos , Sarampo/etnologia , Sarampo/prevenção & controle , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/normas , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/normas , Vigilância de Produtos Comercializados/normas , Convulsões/etiologia , Trombocitopenia/etiologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/normas , Vacinas Combinadas/imunologia , Vacinas Combinadas/normas
20.
Biotechnol Bioeng ; 114(7): 1419-1427, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28218405

RESUMO

Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus (Pf) by studying its ability to generate electricity in a two-chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m-2 and a peak power density of 225 mW m-2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio-electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419-1427. © 2017 Wiley Periodicals, Inc.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Eletrodos , Transferência de Energia , Pyrococcus furiosus/fisiologia , Aderência Bacteriana/fisiologia , Condutividade Elétrica , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA