Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Cardiothorac Surg ; 13(3): 283-290, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38841085

RESUMO

Background: The labeled sizes of surgical valve prostheses and their discordance with the physical internal valve orifice sizes has long been a controversy in the cardiac surgery community, leading many to believe it to be a contributing factor in prosthesis-patient mismatch following valvular replacement surgery. In an attempt to address this issue, the International Organization for Standardization (ISO) 5840-2:2021 standard for surgical valve prostheses recommends that a new sizing parameter, namely, the effective orifice diameter, be provided in labeling by all manufacturers as an indicator of the true flow-passing capacity of a prosthetic valve. Methods: The ISO Cardiac Valves Working Group conducted a multi-laboratory round-robin study to investigate whether the effective orifice diameter of a prosthetic surgical valve could be derived repeatably and reproducibly through steady forward-flow testing. A total of seven valve models, each with multiple sizes, were tested, including a mechanical heart valve and multiple biological heart valves. Results: The round-robin study confirmed that the steady forward-flow test had good intra-laboratory repeatability and inter-laboratory reproducibility in deriving the effective orifice diameters of surgical valve prostheses. On average, among the participating laboratories, the experimentally derived effective orifice diameter of a prosthetic heart valve was 3-12 mm smaller than its labeled size. Conclusions: The effective orifice diameter provides better characterization of the hydrodynamic characteristics of a surgical valve prosthesis and can be derived using a validated steady forward-flow test method. This new sizing parameter will soon be adopted by surgical valve manufacturers and provided in device labeling to inform valve selection by surgeons.

2.
J Org Chem ; 89(11): 7656-7661, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38745550

RESUMO

A visible-light-triggered ring opening/in situ SO2-capture/alkynylation sequence of cyclopropyl alcohols with alkynyl triflones using 4CzIPN as a triplet energy transfer photocatalyst is herein described. This metal-free protocol provides a straightforward and atom-economical approach to alkynyl-substituted γ-keto sulfones with a broad scope of substituents. In this transformation, alkynyl triflones could be used as both radical acceptors and SO2 donors. Preliminary experimental mechanistic studies and synthetic utility are also demonstrated.

3.
Environ Sci Pollut Res Int ; 31(13): 20477-20487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376777

RESUMO

Fine particulate matter (PM2.5) and volatile organic compounds (VOCs) are associated with adverse health effects and show spatial variation in three dimensions. The present study attempted to evaluate source contributions of PM2.5 and toxic VOCs in a metropolitan area focusing on the associated vertical variations. A special emphasis is put on the effects of the elevated expressway on the vertical variability of contribution estimates of the identified sources. Nine source factors, i.e., soil dust, sea salt/oil combustion, secondary nitrate, industrial emission, aged VOCs/secondary aerosol, traffic-related I, solvent use/industrial process, secondary sulfate, and traffic-related II, were identified using positive matrix factorization (PMF). The main contributors to PM2.5 were secondary sulfate (19.1%) and traffic-related emissions (traffic-related I and II, 16.1%), whereas the largest contributors to VOCs were traffic-related emissions (37.6%). The influence of the elevated expressway is suggested to be particularly critical on vertical variations of traffic-related emissions, including aging and secondary formation of locally accumulated air pollutants near roads. Increasing the building porosity under the viaduct could reduce the accumulation of air pollutants caused by the shelter effect. Additionally, in-street barriers would be beneficial in reducing population exposure to traffic-related emissions by altering the airflows near roads.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluição do Ar/análise , Compostos Orgânicos Voláteis/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA