RESUMO
Malignant pleural effusion (MPE) is a common complication of lung adenocarcinoma (LADC) which is associated with a dismal prognosis. We investigated the prognostic role of PD-L1 and other immunomodulators expression in the immune compartment of MPE immune composition. MPE cytologic cell blocks of 83 LADC patients were analysed for the mRNA expression of 770 cancer-immune genes by the NanoString nCounter platform. The expression of relevant immune cell lineage markers was validated by immunohistochemistry (IHC) using quantitative pathology. The mRNA immune profiling identified four MPE patient clusters (C). C1/2 (adaptive+, hot) showed better overall survival (OS) than C3/4 (adaptive-, cold). Additionally, cold immunity profiles (adaptive-), C4 (innate+) were associated with worse OS than C3 (innate-). High PD-L1 expression was linked to the regulation of T cell activation and interferon signalling pathways. Genes of pattern recognition receptor and type I interferon signalling pathways were specifically upregulated in the long-survival (≥90 days) patient group. Moreover, immunomodulators were co-activated and highly expressed in hot adaptive immunity patient clusters, whereas CD274 (PD-L1), TNFRSF9 (4-1BB), VEGFA (VEGF-A) and CD276 (B7-H3) were upregulated in the groups referred as cold. The patient cluster, age and PD-L1 expression were independent prognosticators for LADC MPE patients (p-value < 0.05). Our study sheds light on the variances of immune contexture regarding different PD-L1 expression and survival conditions. It revealed four distinct prognostic patient clusters with specific immune cell components and immunomodulator expression profiles, which, collectively, is supportive for future therapeutic and prognosis for cancer management.
RESUMO
How to overcome multiple obstacles to achieve the efficient and safe delivery of therapeutic genes is still the key to gene therapy. To address this issue, a cationic carrier consisting of polyamide-amine (HPAA-peptide-Fc) modified by an enzyme-responsive polypeptide as the core and hyperbranched polyglycerol derivative (CD-HPG) as the shell was synthesized by self-assembly. The obtained HPAA-peptide-HPG could form the compact nanocomplex with siPlk1, thus confirming the stable load of genes and subsequent targeted gene delivery. And the nanogenes could significantly induce apoptotic effect via the down-expression of Plk1 protein in breast cancer cells. Moreover, compared to polyethylenimine, HPAA-peptide-HPG exhibited superior biocompatibility through hemolysis and cell viability assays because of the shielding function of CD-HPG, thereby being beneficial to increasing the circulation time of the complex when administrated in vivo. Such an efficient and safe gene delivery complex (HPAA-peptide-HPG) presents a good example of rational design of cationic supramolecular vesicles for stimulus-responsive siRNA transport, which should be encouraged in cancer gene therapy.
Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/genética , Feminino , Técnicas de Transferência de Genes , Humanos , RNA Interferente Pequeno/genéticaRESUMO
Multidrug resistance (MDR) is a key to the ineffectiveness of hepatocellular carcinoma (HCC) chemotherapy. Oxaliplatin (OXA), as one of the first-line chemotherapeutic drugs for HCC, abnormally activates the PI3K/AKT/mTOR signaling pathway and DNA damage repair pathway (NHEJ and HR), causing drug resistance and consequnet compromised efficacy. Herein, we developed a hollow polydopamine nanoparticle (H-PDA)-based nano-delivery system (O/P-HP) that contained OXA and a dual PI3K/mTOR inhibitor PKI-587 with complementary effects for combating drug resistance in cancer chemotherapy. The hollow structure of H-PDA endowed O/P-HP with high loading efficiencies of OXA and PKI-587-up to 49.6% and 7.0%, respectively. In addition, benefiting from the intracellular delivery of H-PDA as well as the highly concentrated drugs therein, O/P-HP inhibited the proliferation of OXA-resistant HR cells, resulting in a cell viability of only 17.63%. These values were significantly superior to those with OXA single-agent treatment and treatment with free OXA in combination with PKI-587. We examined the intrinsic mechanisms of the combination therapy: O/PHP had excellent anti-cancer effects via the simultaneous upstream and downstream action to re-sensitize HR cells to chemotherapy; OXA induced strong apoptosis via the direct platinum lesions on DNA molecules, while PKI-587 normalized the abnormally activated PI3K/AKT/mTOR signaling pathway and DNA damage repair pathway (NHEJ and HR) that could attenuate the effectiveness of OXA, thus resulting in inhibition of cell proliferation, migration and DNA repair enzyme activity and the augment of apoptotic effects. Such combination therapy, with simultaneous upstream and downstream action, may be a strategy for minimizing resistance for anti-cancer treatments.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Preparações Farmacêuticas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Indóis , Neoplasias Hepáticas/tratamento farmacológico , Morfolinas , Oxaliplatina , Fosfatidilinositol 3-Quinases , Polímeros , TriazinasRESUMO
Supramolecular hydrogels derived from natural biomolecules have promising applications for drug delivery due to their inherent biocompatibility and tunable responsiveness to various stimuli. However, conventional hydrogels only modulate the release kinetics roughly to achieve sustained drug release, exhibiting fast-then-slow release behavior without on/off control. Herein, a guanosine (G)-quartet·Na+-borate supramolecular hydrogel (GB hydrogel) cross-linked via a guanosine-borate diester and intertwined by G4-nanofibres formed by π-π stacking of G4-quartets stabilized by Na+ is developed for on-demand release of Acyclovir (Acv). This GB hydrogel is facilely prepared by a one-pot hierarchical assembly involving hydrogen bonds, dynamic borate ester bonds and cation coordination, which endow it with tunable mechanical properties, excellent self-healing properties and reversible degradation behavior in response to pH, glucose and ion concentration. Benefiting from that the guanosine analog Acv is able to assemble into a G4-quartet by replacing guanosine via reversible hydrogen bonding, the Acv-loaded GB hydrogel showed favorable stability in physiological medium without undesired release and achieved external stimulus-triggered on-demand release with switchable on/off control and tunable release kinetics. Moreover, the GB hydrogel also exhibited excellent in vitro and in vivo biocompatibility. Such a natural nucleoside-based supramolecular hydrogel with on-demand drug release, self-healing property, biodegradability and biocompatibility provides a precisely controlled paradigm to overcome early burst release behavior of conventional hydrogels for the development of injectable hydrogel delivery systems.
Assuntos
Boratos , Hidrogéis , Aciclovir , Preparações de Ação Retardada , GuanosinaRESUMO
INTRODUCTION: The amount of residual tumor burden after neoadjuvant chemotherapy is an important prognosticator, but for non-small cell lung carcinoma (NSCLC), no official regression scoring system is yet established. Computationally derived histological regression scores could provide unbiased and quantitative readouts to complement the clinical assessment of treatment response. METHODS: Histopathologic tumor regression was microscopically assessed on whole cases in a neoadjuvant chemotherapy-treated cohort (NAC, nâ¯=â¯55 patients) of lung squamous cell carcinomas (LSCC). For each patient, the slide showing the least pathologic regression was selected for subsequent computational analysis and histological features were quantified: percentage of vital tumor cells (cTu.Percentage), total surface covered by vital tumor cells (cTu.Area), area of the largest vital tumor fragment (cTu.Size.max), and total number of vital tumor fragments (cTu.Fragments). A chemo-naïve LSCC cohort (CN, nâ¯=â¯104) was used for reference. For 23 of the 55 patients [18F]-Fluorodeoxyglucose (FDG) PET/CT measurements of maximum standard uptake value (SUVmax), background subtracted lesion activity (BSL) and background subtracted volume (BSV) were correlated with pathologic regression. Survival analysis was carried out using Cox regression and receiver operating characteristic (ROC) curve analysis using a 3-years cutoff. RESULTS: All computational regression parameters significantly correlated with relative changes of BSV FDG PET/CT values after neoadjuvant chemotherapy. ROC curve analysis of histological parameters of NAC patients showed that cTu.Percentage was the most accurate prognosticator of overall survival (ROC curve AUCâ¯=â¯0.77, p-valueâ¯=â¯0.001, Cox regression HRâ¯=â¯3.6, pâ¯=â¯0.001, variable cutoff <â¯=â¯30 %). CONCLUSIONS: This study demonstrates the prognostic relevance of computer-derived histopathologic scores. Additionally, the analysis carried out on slides displaying the least pathologic regression correlated with overall pathologic response and PET/CT values. This might improve the objective histopathologic assessment of tumor response in neoadjuvant setting.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Fluordesoxiglucose F18 , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Terapia Neoadjuvante , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Prognóstico , Compostos RadiofarmacêuticosRESUMO
BACKGROUND: Malignant serous effusion (MSE) denotes a manifestation of metastatic disease with typical high concentrations of both cancer and immune cells, making them an ideal resource for in vitro cytologic studies. Hence, the aim of the study was to investigate the features of 2D and 3D MSE culture systems as well as their feasibilities for in vitro drug screening. METHODS: Pleural and peritoneal effusions from 8 patients were collected and processed for 2D monolayer and 3D hanging drop cell culture into GravityPLUS™ plates. Representative markers for cell components, proliferation rate and tumour classification were investigated by immunohistochemistry, followed by absolute quantification using a digitalised image analysis approach. Further, we implemented another 3D cell culture model based on a low attachment method for in vitro drug sensitivity testing of carboplatin, pemetrexed and pembrolizumab for 5 patients. RESULTS: Monolayer cell culture was favourable for the growth of mesothelial cells, while hanging drop culture in GravityPLUS™ plates showed better ability for preserving cancer cells, inducing positive diagnostic markers expression and restraining the growth of mesothelial cells. For in vitro drug testing, MSE from five patients presented various drug sensitivities, and one case showed strong response to PD-1 checkpoint inhibition (pembrolizumab). For some patients, the application of combinatorial drugs had better therapeutic responses compared to monotherapy. CONCLUSIONS: Digitalised quantification of data offers a better understanding of different MSE culture models. More importantly, the proposed platforms are practical and amenable for performing in vitro chemo-/immunotherapeutic drug testing by using routine cytologic MSE in a personalised manner. Next to cell blocks, our work demonstrates the prognostic and predictive value of cytologic effusion samples.
Assuntos
Líquido Ascítico , Derrame Pleural Maligno , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Humanos , Pemetrexede , Derrame Pleural Maligno/tratamento farmacológicoRESUMO
The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.
RESUMO
Malignant pleural effusion (MPE) is a severe condition of advanced tumors without effective therapy. We used digitalized immunohistochemical and transcriptional approaches to investigate the prognostic influence of immune cells and expression variance of associated immunomodulatory molecules in MPE. Cytology tissue microarrays were constructed from MPE cell blocks of 155 patients with five tumor entities. Immune cells lineage markers were quantified by computational cytopathology on immunohistochemistry. mRNA expression analysis of nine lineage markers and 17 immunomodulators was performed by NanoString. Immunohistochemically quantified high B cells to leukocytes ratio (hazard ratio (HR) = 0.70, p-value = 0.043) and low neutrophils to leukocytes ratio (HR = 1.78, p-value = 0.003) were favorable prognosticators for overall survival independent of tumor entity. Correspondingly, patients with high B cells but low neutrophils gene expression signature showed longer median overall survival of 500 days (HR = 2.29, p-value = 0.009). Regarding targetable molecule expressions, lung adenocarcinomas were characterized by high PD-L1, but mesothelioma by high LAG-3. Ovarian carcinoma was least immunogenic. Independent of tumor entity, the condition of the immune system in MPE liquids is able to provide additional prognostic cytologic information. Combined analysis of lineage specific markers and related immunomodulators may direct immune-based therapeutic decisions.
RESUMO
To enhance the chemotherapy effect to MDA-MB-231, a glutathione (GSH)-sensitive amphiphilic hyperbranched poly (amide-amine) (mPEG-PLGA-HPAA) was synthesized, and the anti-cancer drug, paclitaxel (PTX) was then encapsulated into the mPEG-PLGA-HPAA micelles. The mPEG-PLGA-HPAA containing a large number of disulfide bonds could degrade and then consume the GSH intracellularly, which was expected to enhances the sensitivity of MDA-MB-231 cells to PTX. It was found that the mPEG-PLGA-HPAA/PTX nanoparticles could respond to the GSH and showed a GSH-controlled PTX release. Simultaneously, the mPEG-PLGA-HPAA/PTX nanoparticles significantly enhanced the efficacy of PTX by inhibiting MDA-MB-231 cells proliferation and inducing cells apoptosis, performing the self-sensitization effect of chemotherapy. Moreover, the drug carrier of mPEG-PLGA-HPAA exhibited excellent biocompatibility in vitro and in vivo. These results indicated that the self-sensitized drug carrier is a promising route to maximize the therapeutic effect and minimize the side effects of chemotherapy drugs used currently in clinical.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Sistemas de Liberação de Medicamentos , Paclitaxel/farmacologia , Poliaminas/química , Poliésteres/química , Polietilenoglicóis/química , Tensoativos/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Estrutura Molecular , Paclitaxel/química , Tamanho da Partícula , Poliaminas/síntese química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Propriedades de Superfície , Tensoativos/síntese químicaRESUMO
[This corrects the article DOI: 10.1155/2018/7131532.].
RESUMO
Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone.
RESUMO
Engraftment of tissue-engineered bone plays a pivotal role in the treatment of large bone defects. However, promoting thorough vascularization in the central area of tissue-engineered constructs remains a great challenge for clinical application. Here, we developed a three-dimensional (3D) co-culture system using biphasic calcium phosphate bioceramic (BCPB) scaffold seeded with rabbit peripheral blood-derived mesenchymal stem cells (PB-MSCs) and endothelial progenitor cells (EPCs) to improve new bone formation and vascularization for long bone segmental defects. In vitro studies, we identified morphology and characterization of PB-MSCs and EPCs. We also created a co-culture system of PB-MSCs and EPCs, and assessed the CD31 expression, gene expression of VEGF, PDGF and ALP, and tube formation ability of the co-culture system. Moreover, the biocompatibility of the BCPB was assessed and secretion levels of ALP, OC, PDGF and VEGF by co-cultured PB-MSC and EPCs in the 3D co-culture system were determined (ELISA). In vivo studies were performed to assess the ability of the cell-scaffold construct to repair a rabbit large bone defect model by X-ray examination, gross observation, and histological staining. With the extension of incubation time, both osteogenic- and vascular-related genes were up-regulated when EPCs co-cultured with PB-MSCs. In addition, BCPB is biocompatible and the expression levels of osteogenic- and vascular-related markers were also up-regulated in the 3D co-culture system. Seeding of PB-MSCs and EPCs within a modified BCPB and subsequently implanted gave rise to new bone and promoted vascularization in the rabbit model. These findings suggest that our vascularized tissue-engineered bone may be a potential alternative in the treatment of large bone defects.
Assuntos
Células Progenitoras Endoteliais , Células-Tronco Mesenquimais , Animais , Regeneração Óssea , Técnicas de Cocultura , Neovascularização Fisiológica , Osteogênese , Coelhos , Engenharia Tecidual , Alicerces TeciduaisRESUMO
INTRODUCTION: Phosphatase and tensin homolog (PTEN) loss is frequently observed in NSCLC and associated with both phosphoinositide 3-kinase activation and tumoral immunosuppression. PTEN immunohistochemistry is a valuable readout, but lacks standardized staining protocol and cutoff value. METHODS: After an external quality assessment using SP218, 138G6 and 6H2.1 anti-PTEN antibodies, scored on webbook and tissue microarray, the European Thoracic Oncology Platform cohort samples (n = 2245 NSCLC patients, 8980 tissue microarray cores) were stained with SP218. All cores were H-scored by pathologists and by computerized pixel-based intensity measurements calibrated by pathologists. RESULTS: All three antibodies differentiated six PTEN+ versus six PTEN- cases on external quality assessment. For 138G6 and SP218, high sensitivity and specificity was found for all H-score threshold values including prospectively defined 0, calculated 8 (pathologists), and calculated 5 (computer). High concordance among pathologists in setting computer-based intensities and between pathologists and computer in H-scoring was observed. Because of over-integration of the human eye, pixel-based computer H-scores were overall 54% lower. For all cutoff values, PTEN- was associated with smoking history, squamous cell histology, and higher tumor stage (p < 0.001). In adenocarcinomas, PTEN- was associated with poor survival. CONCLUSION: Calibration of immunoreactivity intensities by pathologists following computerized H-score measurements has the potential to improve reproducibility and homogeneity of biomarker detection regarding epitope validation in multicenter studies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Diagnóstico por Computador/métodos , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Patologistas/estatística & dados numéricos , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Idoso , Biomarcadores Tumorais , Carcinoma de Células Grandes/metabolismo , Carcinoma de Células Grandes/patologia , Carcinoma de Células Grandes/cirurgia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Análise Serial de TecidosRESUMO
Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity.
Assuntos
Matriz Óssea/química , Materiais Revestidos Biocompatíveis/química , Estrôncio/química , Animais , Células da Medula Óssea/citologia , Carboximetilcelulose Sódica/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Dopamina/química , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/químicaRESUMO
Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.
RESUMO
OBJECTIVE: To investigate the effectiveness of human placental decidua basalis derived mesenchymal stem cells (PDB-MSCs) in repairing full-thickness skin defect of nude mice. METHODS: Human placenta samples were obtained from healthy donor mothers with written informed consent. PDB-MSCs were isolated through enzymic digestion and density gradient centrifugation; the 4th passage cells were identified by cellular morphology, cell adipogenic and osteogenic differentiation, and phenotype evaluation. Forty-two 4-5-week-old BALB/c female nude mice were randomly divided into experimental group (n=21) and control group (n=21). The 4th passage PDB-MSCs solution (200 µL, 5×106/mL) was injected into the mice of experimental group via caudal vein; the mice of control group were given equal volume of PBS. The full-thickness skin defect model of 1.5 cm×1.5 cm in size was made after 3 days. The wound healing was observed generally at 1, 2, 4, 7, 14, 18, 21, 25, and 30 days after operation, and the wound healing rate was calculated after wound decrustation. HE staining was used to observe the wound repair at 1, 7, 14, 21, and 31 days; immunofluorescent staining was used for cellular localization at 7, 14, and 31 days after operation. RESULTS: Cells isolated from human placenta were MSCs which had multipotential differentiation ability and expressed MSCs phenotype. Animals survived to the end of the experiment. The general observation showed that the experimental group had a faster skin repairing speed than the control group; the time for decrustation was 12-14 days in experimental group and was 14-17 days after operation in the control group. The wound healing rate of experimental group was significantly higher than that of control group at 14, 18, and 21 days (t=4.001, P=0.016; t=3.380, P=0.028; t=3.888, P=0.018), but no significance was found at 25 and 30 days (t=1.565, P=0.193; t=1.000, P=0.423). HE staining showed lower inflammatory reaction, and better regeneration of the whole skin and glands with time in the experimental group. The immunofluorescent staining was positive in skin defect area of experimental group at different time points which displayed that human PDB-MSCs existed. CONCLUSIONS: Through enzymic digestion and density gradient centrifugation, PDB-MSCs can be obtained. Pre-stored PDB-MSCs can mobilize to the defect area and participate in repair of nude mice skin.
Assuntos
Decídua , Células-Tronco Mesenquimais , Placenta , Pele/lesões , Lesões dos Tecidos Moles/terapia , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteogênese , Gravidez , CicatrizaçãoRESUMO
BACKGROUND: In order to shed light on the regenerative mechanism of mesenchymal stem cells (MSCs) in vivo, the bio-distribution profile of implanted cells using a stable and long-term tracking method is needed. We herein investigated the bio-distribution of human placental deciduas basalis derived MSCs (termed as PDB-MSCs) in nude mice after intravenous injection by carbon radioisotope labeling thymidine ((14)C-TdR), which is able to incorporate into new DNA strands during cell replication. RESULTS: The proliferation rate and radioactive emission of human PDB-MSCs after labeled with different concentrations of (14)C-TdR were measured. PDB-MSCs labeled with 1 µCi possessed high radioactivity, and the biological characteristics (i.e. morphology, colony forming ability, differentiation capabilities, karyotype and cell cycle) showed no significant changes after labeling. Thus, 1 µCi was the optimal concentration in this experimental design. In nude mice, 1 × 10(6) (14)C-TdR-labeled PDB-MSCs were injected intravenously and the organs were collected at days 1, 2, 3, 5, 30 and 180 after injection, respectively. Radiolabeled PDB-MSCs were found mainly in the lung, liver, spleen, stomach and left femur of the recipient nude mice at the whole observation period. CONCLUSIONS: This work provided solid evidence that (14)C-TdR labeling did not alter the biological characteristics of human placental MSCs, and that this labeling method has potential to decrease the signal from non-infused or dead cells for cell tracking. Therefore, this labeling technique can be utilized to quantify the infused cells after long-term follow-up in pre-clinical studies.
Assuntos
Radioisótopos de Carbono/farmacocinética , Rastreamento de Células/métodos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Timidina/farmacocinética , Animais , Radioisótopos de Carbono/química , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Gravidez , Timidina/química , Distribuição TecidualRESUMO
Mesenchymal stem cells (MSCs) have been increasingly offered for tissue regeneration with the premise that they can survive and thrive amidst the microenvironment of injured or degenerate tissues. The role of high mobility group box 1 (HMGB1) and hypoxia in the proliferation and migration of rat bone marrow MSCs (rBM-MSCs) has been investigated. First, the effect of HMGB1 on the proliferation of rBM-MSCs was determined. Second, to evaluate the regulation of hypoxia and HMGB1 in the migration of rBM-MSCs, cells in the wound healing model were exposed to four conditions: normoxia (20% O2) and complete medium, normoxia and HMGB1, hypoxia (1% O2) and complete medium, hypoxia and HMGB1. RT-PCR and Western blotting were used to measure the expression of migration-related genes and proteins. HMGB1 inhibited the proliferation of rBM-MSCs; HMGB1 alone or together with hypoxia and promoted the migration of MSCs and upregulated the expression of HIF-1α and SDF-1. These results demonstrated that HMGB1 arrested the proliferation of rBM-MSCs, but enhanced the migration of rBM-MSCs which could be further improved by hypoxia. This study strengthens current understanding of the interaction between MSCs and the microenvironment of damaged tissues.