Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37971881

RESUMO

The lymphatic vasculature is the natural pathway for the resolution of inflammation, yet the role of pulmonary lymphatic drainage function in sepsis-induced acute respiratory distress syndrome (ARDS) remains poorly characterized. In this study, indocyanine green-near infrared lymphatic living imaging was performed to examine pulmonary lymphatic drainage function in septic mouse models. We found that the pulmonary lymphatic drainage was impaired owing to the damaged lymphatic structure in sepsis-induced ARDS. Moreover, prior lymphatic defects by blocking vascular endothelial growth factor receptor-3 (VEGFR-3) worsened sepsis-induced lymphatic dysfunction and inflammation. Posttreatment with vascular endothelial growth factor-C (Cys156Ser) (VEGF-C156S), a ligand of VEGFR-3, ameliorated lymphatic drainage by rejuvenating lymphatics to reduce the pulmonary edema and promote draining of pulmonary macrophages and neutrophils to pretracheal lymph nodes. Meanwhile, VEGF-C156S posttreatment reversed sepsis-inhibited CC chemokine ligand 21 (CCL21), which colocalizes with pulmonary lymphatic vessels. Furthermore, the advantages of VEGF-C156S on the drainage of inflammatory cells and edema fluid were abolished by blocking VEGFR-3 or CCL21. These results suggest that efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. Our findings offer a therapeutic approach to sepsis-induced ARDS by promoting lymphatic drainage function.


Assuntos
Vasos Linfáticos , Síndrome do Desconforto Respiratório , Sepse , Camundongos , Animais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Vasos Linfáticos/patologia , Inflamação/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/metabolismo
2.
Acta Pharm Sin B ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37360014

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.

3.
J Stroke Cerebrovasc Dis ; 31(12): 106856, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309004

RESUMO

OBJECTIVES: It has not been reported whether collateral circulation, a factor closely related to the prognosis of patients with cerebral infarction, is related to the occurrence of crossed cerebellar diaschisis(CCD) or not. Our research attempts to verify the relationship between the collateral circulation grade and the occurrence of CCD, mainly by means of CTA and CTP. MATERIALS AND METHODS: A total of 47 patients were divided into a CCD-positive (Kim et al., 2019) or a CCD-negative group Furlanis et al. (2018) by calculating the asymmetry index (AI) value (<10%) of bilateral cerebellar cerebral blood flow (CBF). A 4-scale grading method was used to evaluate collateral circulation in the supratentorial infarct area, and the four perfusion parameters of the supratentorial and subtentorial brain regions were analyzed and compared between the two groups. The extent of vascular lesions was evaluated by MR sequences including DWI and MRA. RESULTS: Among the four perfusion parameters, except for CBV, were significantly different between the bilateral cerebellum in the CCD-positive group, but only TTP in the supratentorial cerebral infarction area was statistically different in the two groups. Moreover, the collateral circulation sore in the CCD-positive group was significantly lower than that in the CCD-negative group. But no statistical difference was found in the comparison of DWI positive rates between the two groups. CONCLUSION: The collateral score in the supratentorial infarct area is correlated with the occurrence of CCD,which may be used to explain the effect of CCD on the prognosis of patients.


Assuntos
Diásquise , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Circulação Colateral , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Cerebelo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Infarto Cerebral/complicações , Infarto Cerebral/diagnóstico por imagem , Infarto/patologia
4.
Front Cell Infect Microbiol ; 12: 915099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719361

RESUMO

Sepsis, a life-threatening organ dysfunction, is not caused by direct damage of pathogens and their toxins but by the host's severe immune and metabolic dysfunction caused by the damage when the host confronts infection. Previous views focused on the damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), including metabolic proinflammatory factors in sepsis. Recently, new concepts have been proposed to group free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), cholesterol, mitochondrial DNA (mtDNA), oxidized phospholipids (OxPLs), ceramides, and uric acid into metabolism-associated molecular patterns (MAMPs). The concept of MAMPs will bring new guidance to the research and potential treatments of sepsis. Nowadays, sepsis is regarded as closely related to metabolic disorders, and MAMPs play an important role in the pathogenesis and development of sepsis. According to this view, we have explained MAMPs and their possible roles in the pathogenesis of sepsis. Next, we have further explained the specific functions of different types of MAMPs in the metabolic process and their interactional relationship with sepsis. Finally, the therapeutic prospects of MAMPs in sepsis have been summarized.


Assuntos
Sepse , Alarminas , Humanos , Mitocôndrias/metabolismo , Moléculas com Motivos Associados a Patógenos
5.
Br J Pharmacol ; 179(22): 5132-5147, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764296

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH: The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure. After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by haemodynamic measurement and echocardiography, respectively. Vascular remodelling was evaluated by histological staining. Confocal microscopy and western blot were used to test related protein expression. In vitro cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS: Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated right ventricular dysfunction (RVD) in the murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodelling, attenuating endothelial to mesenchymal transformation and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK, and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS: Maresin 1 improved abnormal pulmonary vascular remodelling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Proliferação de Células , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos , Miócitos de Músculo Liso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar , RNA Interferente Pequeno/farmacologia , Ratos , Remodelação Vascular , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
6.
Shock ; 57(4): 565-575, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271545

RESUMO

ABSTRACT: Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by increased permeability of the alveolar-capillary barrier and impaired alveolar fluid clearance. Resolvin E1 (RvE1) is a specialized pro-resolving mediator derived endogenously from omega-3-polyunsaturated fatty acids. RvE1 (10 µg/kg i.v.) was injected to rats 6 h post-lipopolysaccharide (LPS) (14 mg/kg) induction. After another 3 h, alveolar fluid clearance was measured in live rats (n = 8-9). The primary Type II alveolar epithelial cell was isolated and treated by LPS (1 µg/mL) with or without RvE1 (250 nM). The expression of epithelial sodium channel (ENaC), Na+/K+-ATPase (NKA), AKT, serum- and glucocorticoid-induced kinase 1 (SGK1), and Nedd4-2 were detected. RvE1 improved survival rate (30% vs. 70%, P = 0.048), increased the clearance of alveolar fluid (13.34% vs. 18.73%, P  < 0.001), reduced lung wet-dry weight ratio (5.01 vs. 4.63, P  < 0.001), mitigated lung injury scores (13.38 vs. 7.0, P  < 0.05) and inflammation in LPS-induced ARDS in rats. RvE1 upregulated alveolar ENaC and NKA expression in vivo and in vitro. In addition, RvE1 significantly increased the expression of phosphorylated AKT, SGK1, and phosphorylated Nedd4-2 in LPS-stimulated primary alveolar type II cells. The effects of RvE1 were abrogated by blocking phosphatidylinositide3'-kinase (PI3K) and SGK1 with LY294002 and GSK650394, respectively. In summary, RvE1 upregulated ENaC and NKA expression by activating PI3K/AKT/SGK1 pathway to promote alveolar fluid clearance, suggesting that RvE1 may be a potentially effective drug for ARDS treatment.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/metabolismo , Animais , Ácido Eicosapentaenoico/análogos & derivados , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/uso terapêutico , Lipopolissacarídeos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Síndrome do Desconforto Respiratório/tratamento farmacológico , ATPase Trocadora de Sódio-Potássio/efeitos adversos , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34544909

RESUMO

Slow transit constipation (STC) is a gastrointestinal disorder characterized by abnormal prolonged colonic transit time, which affects the life quality of many people. The decrease number of interstitial cells of Cajal (ICCs) is involved in the pathogenesis of STC. However, the molecular mechanism of loss of ICCs in STC remains unclear, making it difficult to develop new agents for the disease. In this study, we investigated the mechanism of decreasing ICCs in the pathogenesis of STC. We constructed the STC model rats by using atropine and diphenoxylate. A series of methods were used including immunofluorescence and immunochemistry staining, western blot, qRT-PCR, exosomes extraction and exosomes labeling. The results indicate that ICCs decreased in the STC rats accompanied with the macrophages activation. Further studies suggested that macrophages decreased the cell viability of ICCs by secretion exosomes containing miR-34c-5p. miR-34c5p targeted the 3Ꞌ -UTR of stem cell factor(SCF) mRNA and regulated the expression of SCF negatively. In conclusion, we demonstrated a novel regulatory mechanism of ICCs cell viability in STC. We found that exosome miR-34c-5p mediate macrophage-ICCs cross-talk. M1 macrophages derived exosomes miR-34c-5p decreased ICCs cell viability by directly targeting SCF.


Assuntos
Exossomos/metabolismo , Células Intersticiais de Cajal/fisiologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Fator de Células-Tronco/metabolismo , Analgésicos Opioides/farmacologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Atropina/farmacologia , Sobrevivência Celular/fisiologia , Constipação Intestinal , Difenoxilato/farmacologia , Motilidade Gastrointestinal , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética , Antagonistas Muscarínicos/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Células-Tronco/genética
8.
Respir Res ; 22(1): 193, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217286

RESUMO

BACKGROUND: Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. METHODS: PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. RESULTS: In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1ß. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. CONCLUSION: PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anti-Inflamatórios/farmacologia , Glicocálix/metabolismo , NF-kappa B/metabolismo , Mucosa Respiratória/metabolismo , Sirtuína 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Glicocálix/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , Mucosa Respiratória/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores
9.
J Inflamm Res ; 14: 1873-1881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007201

RESUMO

PURPOSE: Pulmonary fibrosis (PF) is a progressing lethal disease, effective curative therapies remain elusive and mortality remains high. Maresin conjugates in tissue regeneration 1 (MCTR1) is a DHA-derived lipid mediator promoting inflammation resolution produced in macrophage. However, the effect of MCTR1 on PF remains unknown. MATERIAL AND METHODS: We established a lung fibrosis model in mice induced by intratracheal administration of bleomycin (BLM). On day 7 after lung fibrosis model establishment, treatment with MCTR1 up to day 21. The body weight of each mouse was recorded every day and survival curves were plotted. Histological staining was used to detect pulmonary inflammation and fibrosis. Lung sections were examined with transmission electron microscope to evaluate the ultrastructure of cells and deposit of collagen. Inflammatory cytokines in lung tissues were tested by ELISA. q-PCR and Western blot were used to evaluate the mRNA and the protein levels of EMT-related markers. RESULTS: We found that MCTR1 intervention attenuated BLM-induced lung inflammatory and fibrotic response. Furthermore, MCTR1 protected BLM-induced epithelial cell destroy and reversed epithelial-to-mesenchymal transition phenotype into an epithelial one in lung fibrosis mice. Most importantly, post-treatment with MCTR1 restored BLM-induced lung dysfunction and enhanced survival rate significantly. CONCLUSION: Posttreatment with MCTR1 attenuated BLM-induced inflammation and fibrosis changes in mice, suggested MCTR1 may serve as a novel therapeutic strategy for fibrosis-related diseases.

10.
J Inflamm Res ; 13: 961-968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262632

RESUMO

Sepsis is life-threatening organ dysfunction caused by an imbalance in the body's response to infection and acute lung injury (ALI) related to sepsis is a common complication. The rapid morbidity and high mortality associated with sepsis is a significant clinical problem facing critical care medicine. Inflammation plays a vital role in the occurrence of sepsis. Notably, the body produces different immune cells and pro-inflammatory factors to clear pathogens. However, excessive inflammation can damage multiple tissues and organs when it fails to resolve in time. Additionally, lymphatic vessels could effectively transfer inflammatory cells and factors away from tissues and into blood circulation, thereby reducing damage, and promoting the resolution of inflammation. Therefore, any dysfunction and/or destruction of the lymphatic system may result in lymphedema followed by inflammatory storms and eventual sepsis. Consequently, the present study aimed to review and highlight the role of lymphatic vessels in related body tissues and organs during sepsis and other associated diseases.

11.
J Cell Physiol ; 235(12): 9510-9523, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32529661

RESUMO

Acute respiratory distress syndrome (ARDS) is a lethal clinical syndrome characterized by damage of the epithelial barriers and accumulation of pulmonary edema fluid. Protectin conjugates in tissue regeneration 1 (PCTR1), an endogenously produced lipid mediator, are believed to exert anti-inflammatory and pro-resolution effects. PCTR1 (1 µg/kg) was injected at 8 hr after lipopolysaccharide (LPS; 14 mg/kg) administration, and the rate of pulmonary fluid clearance was measured in live rats at 1 hr after PCTR1 treatment. The primary type II alveolar epithelial cells were cultured with PCTR1 (10 nmol/ml) and LPS (1 µg/ml) for 8 hr. PCTR1 effectively improved pulmonary fluid clearance and ameliorated morphological damage and reduced inflammation of lung tissue, as well as improved the survival rate in the LPS-induced acute lung injury (ALI) model. Moreover, PCTR1 markedly increased sodium channel expression as well as Na, K-ATPase expression and activity in vivo and in vitro. In addition, PCTR1i also upregulated the expression of LYVE-1 in vivo. Besides that, BOC-2, HK7, and LY294002 blocked the promoted effect of PCTR1 on pulmonary fluid clearance. Taken together, PCTR1 upregulates sodium channels' expression via activating the ALX/cAMP/P-Akt/Nedd4-2 pathway and increases Na, K-ATPase expression and activity to promote alveolar fluid clearance. Moreover, PCTR1 also promotes the expression of LYVE-1 to recover the lymphatic drainage resulting in the increase of lung interstitial fluid clearance. In summary, these results highlight a novel systematic mechanism for PCTR1 in pulmonary edema fluid clearance after ALI/ARDS, suggesting its potential role in a therapeutic approach for ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antígenos CD59/farmacologia , Canais Epiteliais de Sódio/genética , Edema Pulmonar/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Animais , Anti-Inflamatórios/farmacologia , Líquidos Corporais/efeitos dos fármacos , Antígenos CD59/química , Antígenos CD59/genética , Inibidor p16 de Quinase Dependente de Ciclina , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Fosfatidilinositol 3-Quinases/genética , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética
12.
J Cell Mol Med ; 24(8): 4736-4747, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32160403

RESUMO

Maresin Conjugates in Tissue Regeneration 1 (MCTR1) is a newly identified macrophage-derived sulfido-conjugated mediator that stimulates the resolution of inflammation. This study assessed the role of MCTR1 in alveolar fluid clearance (AFC) in a rat model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Rats were intravenously injected with MCTR1 at a dose of 200 ng/rat, 8 hours after administration of 14 mg/kg LPS. The level of AFC was then determined in live rats. Primary rat ATII (Alveolar Type II) epithelial cells were also treated with MCTR1 (100 nmol/L) in a culture medium containing LPS for 8 hours. MCTR1 treatment improved AFC (18.85 ± 2.07 vs 10.11 ± 1.08, P < .0001) and ameliorated ALI in rats. MCTR1 also significantly promoted AFC by up-regulating epithelial sodium channel (ENaC) and Na+ -K+ -adenosine triphosphatase (Na, K-ATPase) expressions in vivo. MCTR1 also activated Na, K-ATPase and elevated phosphorylated-Akt (P-Akt) by up-regulating the expression of phosphorylated Nedd4-2 (P-Nedd4-2) in vivo and in vitro. However, BOC-2 (ALX inhibitor), KH7 (cAMP inhibitor) and LY294002 (PI3K inhibitor) abrogated the improved AFC induced by MCTR1. Based on the findings of this study, MCTR1 may be a novel therapeutic approach to improve reabsorption of pulmonary oedema during ALI/acute respiratory distress syndrome (ARDS).


Assuntos
Lesão Pulmonar Aguda/terapia , Células Epiteliais Alveolares/efeitos dos fármacos , Proteínas de Ciclo Celular/farmacologia , Proteínas Oncogênicas/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Células Epiteliais Alveolares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Canais Epiteliais de Sódio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Proteínas Oncogênicas/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Alvéolos Pulmonares/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética
13.
Arch Phys Med Rehabil ; 99(10): 1982-1990, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29709521

RESUMO

OBJECTIVE: To quantify the effects of initial hip angle and angular hip velocity settings of a lower-limb wearable robotic exoskeleton (WRE) on the balance control and mechanical energy requirements in patients with paraplegic spinal cord injuries (SCIs) during WRE-assisted sit-to-stand (STS). DESIGN: Observational, cross-sectional study. SETTING: A university hospital gait laboratory with an 8-camera motion analysis system, 3 forceplates, a pair of instrumented crutches, and a WRE. PARTICIPANTS: Patients (N=12) with paraplegic SCI. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The inclination angle (IA) of the body's center of mass (COM) relative to the center of pressure (COP), and the rate of change of IA (RCIA) for balance control, and the mechanical energy and forward COM momentum before and after seat-off for energetics during WRE-assisted STS were compared between conditions with 2 initial hip angles (105° and 115°) and 3 initial hip angular velocities (800, 1000, 1200 rpm). RESULTS: No interactions between the main factors (ie, initial hip angle vs angular velocity) were found for any of the calculated variables. Greater initial hip angle helped the patients with SCI move the body forward with increased COM momentum but reduced RCIA (P<.05). With increasing initial angular hip velocity, the IA and RCIA after seat-off (P<.05) increased linearly while total mechanical energy reduced linearly (P<.05). CONCLUSIONS: The current results suggest that a greater initial hip angle with smaller initial angular velocity may provide a favorable compromise between momentum transfer and balance of the body for people with SCI during WRE-assisted STS. The current data will be helpful for improving the design and clinical use of the WRE.


Assuntos
Exoesqueleto Energizado , Movimento/fisiologia , Paraplegia/fisiopatologia , Equilíbrio Postural/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Estudos Transversais , Feminino , Quadril/fisiopatologia , Humanos , Masculino , Paraplegia/etiologia , Postura Sentada , Traumatismos da Medula Espinal/complicações , Posição Ortostática
14.
J Neuroeng Rehabil ; 15(1): 14, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506530

RESUMO

BACKGROUND: Powered exoskeleton can improve the mobility for people with movement deficits by providing mechanical support and facilitate the gait training. This pilot study evaluated the effect of gait training using a newly developed powered lower limb exoskeleton robot for individuals with complete spinal cord injury (SCI). METHODS: Two participants with a complete SCI were recruited for this clinical study. The powered exoskeleton gait training was 8 weeks, 1 h per session, and 2 sessions per week. The evaluation was performed before and after the training for (1) the time taken by the user to don and doff the powered exoskeleton independently, (2) the level of exertion perceived by participants while using the powered exoskeleton, and (3) the mobility performance included the timed up-and-go test, 10-m walk test, and 6-min walk test with the powered exoskeleton. The safety of the powered exoskeleton was evaluated on the basis of injury reports and the incidence of falls or imbalance while using the device. RESULTS: The results indicated that the participants were donning and doffing the powered lower limb exoskeleton robot independently with a lower level of exertion and walked faster and farther without any injury or fall incidence when using the powered exoskeleton than when using a knee-ankle-foot orthosis. Bone mineral densities was also increased after the gait training. No adverse effects, such as skin abrasions, or discomfort were reported while using the powered exoskeleton. CONCLUSIONS: The findings demonstrated that individuals with complete SCI used the powered lower limb exoskeleton robot independently without any assistance after 8 weeks of powered exoskeleton gait training. TRIAL REGISTRATION: Trial registration: National Taiwan University Hospital. TRIAL REGISTRATION NUMBER: 201210051RIB . Name of registry: Hui-Fen Mao. URL of registry: Not available. Date of registration: December 12th, 2012. Date of enrolment of the first participant to the trial: January 3rd, 2013.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal/reabilitação , Adulto , Terapia por Exercício/métodos , Humanos , Masculino , Projetos Piloto
15.
J Magn Reson Imaging ; 46(5): 1320-1331, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28248433

RESUMO

PURPOSE: To evaluate the effects of viscosity of contrast agent (CA) on intrarenal oxygenation and diffusion as measured by blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in a rat model. MATERIALS AND METHODS: Radiocontrast iodixanol formulated in three viscosities were designated 270, 320, and 350 (mg iodine/mL). Sixty-three male Wistar rats were divided into four groups. Saline and iodixanol (4 g iodine/kg) were administered. MR images were acquired on a 3.0T scanner at baseline and at 1 hour, 24 hours, 48 hours, and 72 hours postinjection of solutions. BOLD-MRI was performed with a multiple gradient-recalled-echo sequence. The changes in R2*, apparent diffusion coefficient (ADC), fractional anisotropy (FA), histology, and hypoxia-inducible factor-1α (HIF-1α) immunoexpression were evaluated. The R2*, ADC, and FA values were normalized to baseline to calculate ΔR2*, ΔADC, and ΔFA. RESULTS: Compared with baseline levels, distinct elevation of ΔR2* (P < 0.05) and obvious decrease in ΔADC (P < 0.01) and ΔFA (P < 0.05) were observed in all the anatomical compartments at 1 hour after administration of CA. The absolute values in ΔR2*, ΔADC, and ΔFA increased with increases in CA viscosity, and differed significantly between the CA groups in renal cortex (CO), outer stripe of outer medulla (OSOM), and inner stripe of outer medulla (ISOM) (all P < 0.05). A significant positive correlation was observed between ΔR2* and HIF-1α expression (P < 0.001, r = 0.75). Significant negative correlations were observed between ΔADC, ΔFA, and pathologies in CO, OSOM, ISOM (all P < 0.001, r = -0.68-0.87; all P < 0.001, r = -0.60-0.66). CONCLUSION: The effect of CA viscosity on intrarenal oxygenation and diffusion was viscosity-dependent, and was identified using BOLD-MRI and DTI. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1320-1331.


Assuntos
Meios de Contraste/química , Imagem de Tensor de Difusão , Iodo/química , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/sangue , Animais , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Rim/patologia , Masculino , Ratos , Ratos Wistar , Ácidos Tri-Iodobenzoicos/química , Viscosidade
16.
Oncol Lett ; 11(5): 3040-3048, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27123060

RESUMO

The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors.

17.
Histol Histopathol ; 31(12): 1337-46, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26996233

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder caused by the progressive loss of dopaminergic neurons in the substantia nigra. Most investigations have focused on the cerebral regions such as the basal ganglia, thalamus, or the substantia nigra, but whether there is pathologic impairment within the cerebellum has rarely been assessed. Synapsin and neurofilament as the inner markers of neurons and synapses reflect the functional state by their distribution or expression. Significant morphologic changes at the cellular level have been demonstrated directly or indirectly in multiple neurodegenerative diseases. The purpose of this study was to determine whether the behavioral abnormalities that accompany PD are associated with the cerebellum using an in vivo 6-hydroxydopamine lesioned rat model. Forty-two rats were divided into three groups, the Parkinsonian group (N=22), sham group (N=10) and control group (N=10). The dopaminergic lesion was determined by immunohistochemical analysis for tyrosine hydroxylase-immunopositive cells. Immunohistochemical studies showed that the density of synapsin I in the granular layer of the cerebellum on both sides of the Parkinsonian -model was not statistically significantly different compared to the control and sham groups. However, expression of neurofilament H in the cortex within bilateral paramedian lobule (PML) and Crus 2 of the ansiform lobule (C2AL) in cerebellum posterior lobe of Parkinsonian rats was decreased compared with controls (P<0.05), especially in the loss of Purkinje cells and the presence of morphologic abnormalities in the cell nucleus. The study suggested that loss of neurons and synapses may take place in the cerebellar cortex of Parkinson's disease, and might play an important role in the pathologic mechanism of PD.


Assuntos
Cerebelo/patologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Adrenérgicos/toxicidade , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Masculino , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley , Sinapses/patologia
18.
PLoS One ; 8(8): e71120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976989

RESUMO

MYD88 is a key mediator of Toll-like receptor innate immunity signaling. Oncogenically active MYD88 mutations have recently been reported in lymphoid malignancies, but has not been described in MDS. To characterize MYD88 in MDS, we sequenced the coding region of the MYD88 gene in 40 MDS patients. No MYD88 mutation was detected. We next characterized MYD88 expression in bone marrow CD34+ cells (N = 64). Increased MYD88 RNA was detected in 40% of patients. Patients with higher MYD88 expression in CD34+ cells had a tendency for shorter survival compared to the ones with lower MYD88, which was significant when controlled for IPSS and age. We then evaluated effect of MYD88 blockade in the CD34+ cells of patients with lower-risk MDS. Colony formation assays indicated that MYD88 blockade using a MYD88 inhibitor resulted in increased erythroid colony formation. MYD88 blockade also negatively regulated the secretion of interleukin-8. Treatment of MDS CD34+ cells with an IL-8 antibody also increased formation of erythroid colonies. These results indicate that MYD88 plays a role in the pathobiology of MDS and may have prognostic and therapeutic value in the management of patients with this disease.


Assuntos
Regulação da Expressão Gênica , Síndromes Mielodisplásicas/genética , Fator 88 de Diferenciação Mieloide/genética , Receptores Toll-Like/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos/farmacologia , Antígenos CD34/genética , Antígenos CD34/metabolismo , Feminino , Humanos , Interleucina-8/antagonistas & inibidores , Interleucina-8/biossíntese , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/metabolismo , Peptídeos/farmacologia , Análise de Sequência de DNA , Transdução de Sinais , Análise de Sobrevida , Receptores Toll-Like/metabolismo
19.
Chem Commun (Camb) ; 48(36): 4329-31, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22446840

RESUMO

Porphyrins bearing a polyaromatic or a heterocyclic group are prepared to study their fundamental and photovoltaic properties. Solar cells sensitized with a fluorene-modified porphyrin outperform other dyes in the series, reaching ~90% efficiency of N719 dye.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA