Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946167

RESUMO

An atmospheric pressure plasma jet (APPJ) is used to process electrochemically deposited NiFe on carbon paper (NiFe/CP). The reactive oxygen and nitrogen species (RONs) of the APPJ modify the surface properties, chemical bonding types, and oxidation states of the material at the self-sustained temperature of the APPJ. The APPJ treatment further enhances the hydrophilicity and creates a higher disorder level in the carbon material. Moreover, the metal carbide bonds of NiFe/CP formed in the electrochemical deposition (ED) process are converted to metal oxide bonds after APPJ processing. The potential application of APPJ treatment on NiFe/CP in alkaline water electrolysis is demonstrated. With more oxygen-containing species and better hydrophilicity after APPJ treatment, APPJ-treated NiFe/CP is applied as the electrocatalyst for the oxygen evolution reaction (OER) in alkaline water electrolysis. APPJ-treated NiFe/CP is also used in a custom-made anion-exchange membrane water electrolyzer (AEMWE); this should contribute toward realizing the practical large-scale application of AEM for hydrogen production.

2.
Nano Lett ; 24(6): 2102-2109, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295289

RESUMO

The graphene-all-around (GAA) structure has been verified to grow directly at 380 °C using hot-wire chemical vapor deposition, within the thermal budget of the back end of the line (BEOL). The cobalt (Co) interconnects with the GAA structure have demonstrated a 10.8% increase in current density, a 27% reduction in resistance, and a 36 times longer electromigration lifetime. X-ray photoelectron spectroscopy and density functional theory calculations have revealed the presence of bonding between carbon and Co, which makes the Co atom more stable to resist external forces. The ability of graphene to act as a diffusion barrier in the GAA structure was confirmed through time-dependent dielectric breakdown measurement. The Co interconnect within the GAA structure exhibits enhanced electrical properties and reliability, which indicates compatibility applications as next-generation interconnect materials in CMOS BEOL.

3.
Adv Sci (Weinh) ; 11(2): e2304890, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37974381

RESUMO

Monolayer ternary tellurides based on alloying different transition metal dichalcogenides (TMDs) can result in new two-dimensional (2D) materials ranging from semiconductors to metals and superconductors with tunable optical and electrical properties. Semiconducting WTe2 x S2(1- x ) monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with circularly polarized light (CPL). The degree of valley polarization (DVP) under the excitation of CPL represents the purity of valley polarized photoluminescence (PL), a critical parameter for opto-valleytronic applications. Here, new strategies to efficiently tailor the valley-polarized PL from semiconducting monolayer WTe2 x S2(1- x ) at room temperature (RT) through alloying and back-gating are presented. The DVP at RT is found to increase drastically from < 5% in WS2 to 40% in WTe0.12 S1.88 by Te-alloying to enhance the spin-orbit coupling. Further enhancement and control of the DVP from 40% up to 75% is demonstrated by electrostatically doping the monolayer WTe0.12 S1.88 via metallic 1T'-WTe2 electrodes, where the use of 1T'-WTe2 substantially lowers the Schottky barrier height (SBH) and weakens the Fermi-level pinning of the electrical contacts. The demonstration of drastically enhanced DVP and electrical tunability in the valley-polarized emission from 1T'-WTe2 /WTe0.12 S1.88 heterostructures paves new pathways towards harnessing valley excitons in ultrathin valleytronic devices for RT applications.

4.
ACS Appl Mater Interfaces ; 15(40): 47845-47854, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768847

RESUMO

This study demonstrates molybdenum disulfide (MoS2) as a superior candidate as a diffusion barrier and liner. This research explores a newly developed process to show how effectively MoS2 can be applied. First, a new approach is developed to prepare molybdenum disulfide (MoS2) by microwave plasma-enhanced sulfurization (MW-PES). MW-PES can rapidly and directly grow on the target substrate at low temperatures, which is compatible with the back-end-of-line (BEOL) technology. Second, the performance of MW-PES MoS2 as a diffusion barrier and liner is reported in the subsequent section. Through time-dependent dielectric breakdown (TDDB) measurements, MoS2 is shown to have a barrier property better than that of the current material, Ta, with the same thickness. According to the model fitting, the lifetime of the device is about 45.2 times the lifetime under normal operating conditions. Furthermore, MoS2 shows its superior thermal stability in maintaining the barrier properties. MoS2 is proven to be an excellent interface as a liner as it can provide sufficient adhesion and wettability to further effectively reduce the surface scattering of copper (Cu) and significantly lower the circuit resistance.

5.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37763864

RESUMO

Pastes containing reduced graphene oxide (rGO) and LiCl-Mn(NO3)2·4H2O are screen-printed on a carbon cloth substrate and then calcined using a nitrogen atmospheric-pressure plasma jet (APPJ) for conversion into rGO-LiMnOx nanocomposites. The APPJ processing time is within 300 s. RGO-LiMnOx on carbon cloth is used to sandwich H2SO4, LiCl, or Li2SO4 gel electrolytes to form hybrid supercapacitors (HSCs). The areal capacitance, energy density, and cycling stability of the HSCs are evaluated using electrochemical measurement. The HSC utilizing the Li2SO4 gel electrolyte exhibits enhanced electrode-electrolyte interface reactions and increased effective surface area due to its high pseudocapacitance (PC) ratio and lithium ion migration rate. As a result, it demonstrates the highest areal capacitance and energy density. The coupling of charges generated by embedded lithium ions with the electric double-layer capacitance (EDLC) further contributed to the significant overall capacitance enhancement. Conversely, the HSC with the H2SO4 gel electrolyte exhibits better cycling stability. Our findings shed light on the interplay between gel electrolytes and electrode materials, offering insights into the design and optimization of high-performance HSCs.

6.
Angew Chem Int Ed Engl ; 62(6): e202214963, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484557

RESUMO

Fermi's golden rule, a remarkable concept for the transition probability involving continuous states, is applicable to the interfacial electron-transporting efficiency via correlation with the surface density of states (SDOS). Yet, this concept has not been reported to tailor single-molecule junctions where gold is an overwhelmingly popular electrode material due to its superior amenability in regenerating molecular junctions. At the Fermi level, however, the SDOS of gold is small due to its fully filled d-shell. To increase the electron-transport efficiency, herein, gold electrodes are modified by a monolayer of platinum or palladium that bears partially filled d-shells and exhibits significant SDOS at the Fermi energy. An increase by 2-30 fold is found for single-molecule conductance of α,ω-hexanes bridged via common headgroups. The improved junction conductance is attributed to the electrode self-energy which involves a stronger coupling with the molecule and a larger SDOS participated by d-electrons at the electrode-molecule interfaces.

7.
Nanoscale ; 14(46): 17409-17417, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383153

RESUMO

In this study, a molecule with a three-dimensional (3D) cyclic structure, a cryptand, is demonstrated as an effective additive for the quasi-two-dimensional (quasi-2D) PEA2Csn-1PbnBr3n+1 (n = 3, herein) to improve its light-emitting performance. The cryptand can effectively regulate the phase distribution of the quasi-2D perovskite through its intense interaction with PbBr2, benefitting from its cage-like structure that can better capture the Pb2+ ions. Due to the inhibited growth of the low-n phases, a much-concentrated phase distribution is achieved for the cryptand-containing films. Moreover, its constituent O/N atoms can passivate the uncoordinated Pb2+ ions to improve the film quality. Such a synergistic effect thereby facilitates the charge/energy transfer among the multiple phases and reduces the non-radiative recombination. As a result, the quasi-2D perovskite light-emitting diode (PeLED) with the optimized cryptand doping ratio is shown to deliver the highest luminance (Lmax) of 15 532 cd m-2 with a highest external quantum efficiency (EQE) of 4.02%. Compared to the pristine device, Lmax is enhanced by ∼5 times and EQE is enhanced by ∼10 times.

8.
Opt Express ; 30(11): 18552-18561, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221654

RESUMO

The effect of atomic-layer deposition (ALD) sidewall passivation on the enhancement of the electrical and optical efficiency of micro-light-emitting diode (µ-LED) is investigated. Various blue light µ-LED devices (from 5 × 5 µm2 to 100 × 100 µm2) with ALD-Al2O3 sidewall passivation were fabricated and exhibited lower leakage and better external quantum efficiency (EQE) comparing to samples without ALD-Al2O3 sidewall treatment. Furthermore, the EQE values of 5 × 5 and 10 × 10 µm2 devices yielded an enhancement of 73.47% and 66.72% after ALD-Al2O3 sidewall treatments process, and the output power also boosted up 69.3% and 69.9%. The Shockley-Read-Hall recombination coefficient can be extracted by EQE data fitting, and the recombination reduction in the ALD samples can be observed. The extracted surface recombination velocities are 551.3 and 1026 cm/s for ALD and no-ALD samples, respectively.

9.
Adv Sci (Weinh) ; 9(22): e2201507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657078

RESUMO

Smart fabrics that can harvest ambient energy and provide diverse sensing functionality via triboelectric effects have evoked great interest for next-generation healthcare electronics. Herein, a novel borophene/ecoflex nanocomposite is developed as a promising triboelectric material with tailorability, durability, mechanical stability, and flexibility. The addition of borophene nanosheets enables the borophene/ecoflex nanocomposite to exhibit tunable surface triboelectricity investigated by Kelvin probe force microscopy. The borophene/ecoflex nanocomposite is further fabricated into a fabric-based triboelectric nanogenerator (B-TENG) for mechanical energy harvesting, medical assistive system, and wound healing applications. The durability of B-TENG provides consistent output performance even after severe deformation treatments, such as folding, stretching, twisting, and washing procedures. Moreover, the B-TENG is integrated into a smart keyboard configuration combined with a robotic system to perform an upper-limb medical assistive interface. Furthermore, the B-TENG is also applied as an active gait phase sensing system for instantaneous lower-limb gait phase visualization. Most importantly, the B-TENG can be regarded as a self-powered in vitro electrical stimulation device to conduct continuous wound monitoring and therapy. The as-designed B-TENG not only demonstrates great potential for multifunctional self-powered healthcare sensors, but also for the promising advancements toward wearable medical assistive and therapeutic systems.


Assuntos
Nanocompostos , Nanotecnologia , Eletricidade , Nanotecnologia/métodos , Têxteis , Cicatrização
10.
ACS Appl Mater Interfaces ; 14(7): 9587-9596, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142213

RESUMO

In this study, two natural small molecules, α-cyclodextrin (α-CD) and ß-cyclodextrin (ß-CD), are used as additives to improve the performance of quasi-2D PEA2Csn-1PbnBr3n+1 (n = 3, herein) PeLEDs. Both of them are shown to efficiently passivate the quasi-2D perovskite films to afford improved film quality and morphology, but they exhibit distinct phase regulation behaviors possibly due to their different pore sizes. It reveals that α-CD effectively suppresses the formation of the low-n phases (n ≤ 2), while ß-CD better regulates the phase with a medium-n value (n = 3). Because of effectively suppressing the formation of low-n phases, the CD-assisted quasi-2D perovskite films possess facilitated exciton energy transfer and reduced nonradiative recombination. Consequently, the optimized α-CD-derived PeLED shows the highest luminance (Lmax) of 37,825 cd/m2 with an external quantum efficiency (EQE) of 3.81%, while the ß-CD-derived PeLED delivers a lower Lmax of 24,793 cd/m2 with an EQE of 3.09%. Compared to the pristine device, Lmax is enhanced by 6.3 and 3.8 times for α-CD- and ß-CD-based PeLEDs, respectively, and EQE is enhanced by ∼4.8 times for both devices; besides, both CD-assisted devices also exhibit improved color purity and a lower bias dependency of electroluminescent intensity.

11.
Polymers (Basel) ; 13(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833316

RESUMO

A bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC61BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (DBDjet) to treat the BCP with different scan rates. The main purpose of this was to change the contact resistance between the BCP layer and the Ag electrodes through surface modification using a DBDjet. The best power conversion efficiency (PCE) of 13.11% was achieved at a DBDjet scan rate of 2 cm/s. The He DBDjet treatment introduced nitrogen to form C-N bonds and create pits on the BCP layer. This deteriorated the interface between the BCP and the follow-up deposited-Ag top electrode. Compared to the device without the plasma treatment on the BCP layer, the He DBDjet treatment on the BCP layer reduced photocurrent hysteresis but deteriorated the fill factor and the efficiency of the PSCs.

12.
Nature ; 593(7858): 211-217, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981050

RESUMO

Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4-7, energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore's law.

13.
ACS Appl Mater Interfaces ; 13(21): 25202-25213, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34010569

RESUMO

The most attractive aspect of perovskite nanocrystals (NCs) for optoelectronic applications is their widely tunable emission wavelength, but it has been quite challenging to tune it without sacrificing the photoluminescence quantum yield (PLQY). In this work, we report a facile ligand-optimized ion-exchange (LOIE) method to convert room-temperature spray-synthesized, perovskite parent NCs that emit a saturated green color to NCs capable of emitting colors across the entire visible spectrum. These NCs exhibited exceptionally stable and high PLQYs, particularly for the pure blue (96%) and red (93%) primary colors that are indispensable for display applications. Surprisingly, the blue- and red-emissive NCs obtained using the LOIE method preserved the cubic shape and cubic phase structure that they inherited from their parent NCs, while exhibiting high crystallinity and high color-purity. Together with the parent green-emissive NCs, the obtained blue- and red-emissive NCs provided a very wide color gamut, corresponding to a Digital Cinema Initiatives-P3 of 140% or an International Telecommunication Union Recommendation BT.2020 of 102%. With the superior optical merits of these LOIE-manipulated NCs, a corresponding color conversion luminescence device provided a high external quantum efficiency (10.5%) and extremely high brightness (970 000 cd/m2). This study provides a valid route toward highly stable, extremely emissive, and panchromatic perovskite NCs with potential use in a variety of future optoelectronic applications.

14.
ACS Nano ; 15(3): 4627-4635, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33651590

RESUMO

Platinum diselenide (PtSe2) is a group-10 two-dimensional (2D) transition metal dichalcogenide that exhibits the most prominent atomic-layer-dependent electronic behavior of "semiconductor-to-semimetal" transition when going from monolayer to bulk form. This work demonstrates an efficient photoelectrochemical (PEC) conversion for direct solar-to-hydrogen (H2) production based on 2D layered PtSe2/Si heterojunction photocathodes. By systematically controlling the number of atomic layers of wafer-scale 2D PtSe2 films through chemical vapor deposition (CVD), the interfacial band alignments at the 2D layered PtSe2/Si heterojunctions can be appropriately engineered. The 2D PtSe2/p-Si heterojunction photocathode consisting of a PtSe2 thin film with a thickness of 2.2 nm (or 3 atomic layers) exhibits the optimized band alignment and delivers the best PEC performance for hydrogen production with a photocurrent density of -32.4 mA cm-2 at 0 V and an onset potential of 1 mA cm-2 at 0.29 V versus a reversible hydrogen electrode (RHE) after post-treatment. The wafer-scale atomic-layer controlled band engineering of 2D PtSe2 thin-film catalysts integrated with the Si light absorber provides an effective way in the renewable energy application for direct solar-to-hydrogen production.

15.
J Phys Chem A ; 125(4): 943-953, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481595

RESUMO

Exciton delocalization relates to many important photophysical processes such as excitation energy transfer, charge separation, and singlet fission. Here, we analyze the exciton delocalization through the photophysical measurements of the molecular crystal 2,2'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(4-methylphenol) (m-MTTM), which is the segregated HJ-aggregate confirmed by the calculation of exciton coupling along each direction in the crystal structure. Linearly polarized steady-state absorption spectroscopy verifies that the red-shifted optical transition majorly arises from the aggregates unparalleled to the a-axis. In addition, the temperature-dependent emission spectra show the increase of 0-0 versus 0-1 vibronic emission ratio as the temperature decreases with the coherence number equaling 2.2-1.0 at 140-200 K, which is the characteristic behavior of J-aggregates. To elaborate these observations, we carry out the simulation with the Holstein-type Hamiltonian considering short-range charge-transfer-mediated couplings (perturbative regime) under the two-particle approximation, showing that the 3 × 3 laminar-like aggregates in the ac-plane and the 3 × 3 × 2 three-dimensional aggregates fit well with the emission spectrum at 140 K. In the 3 × 3 aggregates, the coherence function in the ac-plane shows the in-phase correlation along (1,0,-1), elucidating how J-aggregates form in segregated HJ-aggregates with dominant positive coupling. Under the strong intralayer out-of-phase correlation, the 3 × 3 × 2 aggregates demonstrate that the vibronic coupling has a great impact on the interlayer correlation. Furthermore, the coherence function along (0,1/2,-1/2) and (-1,1/2,-1/2) exhibits the thermal-activated phase flipping. These discoveries pave the ways for further manipulations of exciton delocalization in three-dimensional molecular solids.

16.
Nanotechnology ; 31(33): 335602, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32369779

RESUMO

Deposition of layers of graphene on silicon has the potential for a wide range of optoelectronic and mechanical applications. However, direct growth of graphene on silicon has been difficult due to the inert, oxidized silicon surfaces. Transferring graphene from metallic growth substrates to silicon is not a good solution either, because most transfer methods involve multiple steps that often lead to polymer residues or degradation of sample quality. Here we report a single-step method for large-area direct growth of continuous horizontal graphene sheets and vertical graphene nano-walls on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD) without active heating. Comprehensive studies utilizing Raman spectroscopy, x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical transmission are carried out to characterize the quality and properties of these samples. Data gathered by the residual gas analyzer (RGA) during the growth process further provide information about the synthesis mechanism. Additionally, ultra-low friction (with a frictional coefficient ∼0.015) on multilayer graphene-covered silicon surface is achieved, which is approaching the superlubricity limit (for frictional coefficients <0.01). Our growth method therefore opens up a new pathway towards scalable and direct integration of graphene into silicon technology for potential applications ranging from structural superlubricity to nanoelectronics, optoelectronics, and even the next-generation lithium-ion batteries.

17.
J Am Chem Soc ; 142(16): 7469-7479, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32223139

RESUMO

Dinuclear Pt(III) complexes were commonly reported to have short-lived lowest-lying triplet states, resulting in extremely weak or no photoluminescence. To overcome this obstacle, a new series of dinuclear Pt(III) complexes, named Pt2a-Pt2c, were strategically designed and synthesized using donor (D)-acceptor (A)-type oxadiazole-thiol chelates as bridging ligands. These dinuclear Pt(III) complexes possess a d7-d7 electronic configuration and exhibit intense phosphorescence under ambient conditions. Among them, Pt2a exhibits orange phosphorescence maximized at 618 nm in degassed dichloromethane solution (Φp ≈ 8.2%, τp ≈ 0.10 µs) and near-infrared (NIR) emission at 749 nm (Φp ≈ 10.1% τp ≈ 0.66 µs) in the crystalline powder and at 704 nm (Φp ≈ 33.1%, τp ≈ 0.34 µs) in the spin-coated neat film. An emission blue-shifted by more than 3343 cm-1 is observed under mechanically ground crystalline Pt2a, affirming intermolecular interactions in the solid states. Time-dependent density functional theory (TD-DFT) discloses the lowest-lying electronic transition of Pt2a-Pt2c complexes to be a bridging ligand-metal-metal charge transfer (LMMCT) transition. The long-lived triplet states of these dinuclear platinum(III) complexes may find potential use in lighting. Employing Pt2a as an emitter, high-performance organic light-emitting diodes (OLEDs) were fabricated with NIR emission at 716 nm (η = 5.1%), red emission at 614 nm (η = 8.7%), and white-light emission (η = 11.6%) in nondoped, doped (in mCP), and hybrid (in CzACSF) devices, respectively.

18.
ACS Appl Mater Interfaces ; 11(50): 47054-47062, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31762264

RESUMO

A sensitive and fast ultraviolet (UV) photodetector is strongly desirable because of its wide range of applications in chemical/biological sensing and imaging. CsPbCl3-based thin film photodetectors have not been constructed previously owing to their extremely poor precursor solubility; however, vapor deposition allows for thin film fabrication without the limitation of solubility. Therefore, this work is the first to demonstrate the optoelectronic properties of inorganic CsPbCl3 perovskite thin films and UV photodiodes using all-vacuum deposition. The perovskites annealed at 120 °C exhibited outstanding performance, including a notable external quantum efficiency value of 797.1% with an applied bias of -2 V, an outstanding detectivity of 1.4 × 1013 Jones, a short response time as low as ∼ 50 µs, and a large linear dynamic range of up to 136 dB. CsPbCl3 thin films manufactured by this vacuum-deposited approach were also found to be moisture-resistant and demonstrated high durability. The devices maintained excellent performance and demonstrated less than 10% degradation after 30 days. Thus, thin film visible-blind UV detectors can potentially be used in transparent smart displays, window-integrated electronic circuits, and sensor applications.

19.
Inorg Chem ; 58(20): 13892-13901, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31565936

RESUMO

Four diplatinum(II) complexes with the formula [Pt(pypm)(µ-Fn)]2 (2, 3a-c) bearing both a pyridine-pyrimidinate chelate and formamidinate bridge, where (pypm)H and FnH stand for 5-(pyridin-2-yl)-2-(trifluoromethyl)pyrimidine and functional formamidines with various substituents of iPr (n = 1), Ph (n = 2), C6H4tBu (n = 3), and C6H4CF3 (n = 4), were synthesized en route from a mononuclear intermediate represented by [Pt(pypm)Cl(F1H)] (1). Single-crystal X-ray diffraction studies confirmed the structure of 1 and 3a comprised of an individual "Pt(pypm)" unit and two "Pt(pypm)" units with a Pt···Pt distance of 2.8845(2) Å, respectively. Therefore, in contrast to the structured emission of mononuclear 1 with the first vibronic peak wavelength at 475 nm, all other diplatinum complexes with shortened Pt···Pt separation exhibited greatly red shifted and structureless metal-metal to ligand charge transfer (MMLCT) emission that extended into the near-infrared region in solid states. Their photophysical characteristics were measured under three distinctive morphological states (i.e., crystals, sublimed powders, and vacuum-deposited thin films) by steady-state UV-vis spectroscopy, while retention of Pt···Pt interactions in deposited thin films of 2 and 3a-c was confirmed using Raman spectroscopy, demonstrating lowered Pt···Pt stretching at 80-200 cm-1. Most importantly, complexes 3a-c exhibited a gradual red shift with the trends crystals < sublimed powders < vacuum-deposited thin films, a result of increased intermolecular π-π stacking interactions and Pt···Pt interactions, while crystalline samples exhibited the highest luminescence among all three morphological states due to the fewest defects in comparison to other morphologies. Finally, 3b was selected as a nondoped emitter for the fabrication of NIR-emitting OLEDs, giving an electroluminescence peak at 767 nm and a maximum external quantum efficiency of 0.14% with negligible roll-off.

20.
Opt Express ; 27(16): A1308-A1323, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510595

RESUMO

A simulation scheme was developed to explore the light distribution of full-color micron-scale light-emitting diode (LED) arrays. The influences of substrate thickness, patterning, and cutting angle of the substrate on several important features, such as light field pattern, light extraction efficiency, and color variation, were evaluated numerically. An experiment was conducted; the results were consistent with simulation results for a 225 × 125 µm2 miniLED and those for an 80 × 80 µm2 microLED. Based on the simulation results, the light extraction efficiency of LED devices with a substrate increases by 67.75% over the extraction efficiency of those without a substrate. The light extraction efficiency of LED devices with a substrate increases by 113.55% when an additional patterned design is used on green and blue chips. The calculated large angle Δu'v' can be as low as 0.015 for miniLED devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA