Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39416035

RESUMO

One of the most striking features of HIV is the capsid; a fullerene cone comprised of the pleomorphic capsid protein (CA) which shields the viral genome from cellular defense mechanisms and recruits cellular cofactors to the virus. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interaction, HIV-2 CA remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we were able to determine high resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and in complexes with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of binding the FG-peptides are conserved with HIV-1, this study reveals distinctive structural features that define the HIV-2 CA lattice, potential differences in interactions with other host factors such as CypA, and divergence in the mechanism of formation of hexameric and pentameric CA assemblies. This study extends our understanding of HIV capsids and highlights an approach with significant potential to facilitate the study of lentiviral capsid biology.

2.
bioRxiv ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39416065

RESUMO

HIV-1 inhibitors, such as Bevirimat (BVM) and Lenacapavir (LEN), block the production and maturation of infectious virions. However, their mechanisms remain unclear due to the absence of high-resolution structures for BVM complexes and LEN's structural data being limited to the mature capsid. Utilizing perforated virus-like particles (VLPs) produced from mammalian cells, we developed an approach to determine in situ cryo-electron microscopy (cryo-EM) structures of HIV-1 with inhibitors. This allowed for the first structural determination of the native immature HIV-1 particle with BVM and LEN bound inside the VLPs at high resolutions. Our findings offer a more accurate model of BVM engaging the Gag lattice and, importantly, demonstrate that LEN not only binds the mature capsid but also targets the immature lattice in a distinct manner. The binding of LEN induces a conformational change in the capsid protein (CA) region and alters the architecture of the Gag lattice, which may affect the maturation process. These insights expand our understanding of the inhibitory mechanisms of BVM and LEN on HIV-1 and provide valuable clues for the design of future inhibitors.

3.
Nat Struct Mol Biol ; 31(10): 1492-1501, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38789685

RESUMO

HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFß to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFß-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.


Assuntos
Microscopia Crioeletrônica , HIV-1 , Modelos Moleculares , Proteína Fosfatase 2 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/química , Humanos , HIV-1/metabolismo , Ligação Proteica , Subunidade beta de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/genética , Proteólise , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Sítios de Ligação , Células HEK293 , Conformação Proteica , Elonguina
4.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766144

RESUMO

Nucleoporins (nups) in the central channel of nuclear pore complexes (NPCs) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptors (NTRs) with bound cargos. The complex molecular interactions between nups and NTRs have been thought to underlie the gatekeeping function of the NPC. Recent studies have shown considerable variation in NPC diameter but how altering NPC diameter might impact the selective barrier properties remains unclear. Here, we build DNA nanopores with programmable diameters and nup arrangement to mimic NPCs of different diameters. We use hepatitis B virus (HBV) capsids as a model for large-size cargos. We find that Nup62 proteins form a dynamic cross-channel meshwork impermeable to HBV capsids when grafted on the interior of 60-nm wide nanopores but not in 79-nm pores, where Nup62 cluster locally. Furthermore, importing substantially changes the dynamics of Nup62 assemblies and facilitates the passage of HBV capsids through NPC mimics containing Nup62 and Nup153. Our study shows the transport channel width is critical to the permeability of nup barriers and underscores the role of NTRs in dynamically remodeling nup assemblies and mediating the nuclear entry of viruses.

5.
Sci Transl Med ; 16(732): eadi3275, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295185

RESUMO

Defining next-generation immune therapeutics for the treatment of sepsis will involve biomarker-based therapeutic decision-making. Bone morphogenetic protein 9 (BMP9) is a cytokine in the transforming growth factor-ß superfamily. Here, circulating BMP9 concentrations were quantified in two independent cohorts of patients with sepsis. Decreased concentrations of serum BMP9 were observed in the patients with sepsis at the time of admission as compared with healthy controls. Concentrations of BMP9 at the time of admission were also associated with 28-day mortality, because patients with sepsis at a higher risk of death had lower BMP9 concentrations. The mechanism driving the contribution of BMP9 to host immunity was further investigated using in vivo murine sepsis models and in vitro cell models. We found that BMP9 treatment improved outcome in mice with experimental sepsis. BMP9-treated mice exhibited increased macrophage influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. In vitro, BMP9 promoted macrophage recruitment, phagocytosis, and subsequent bacterial killing. We further found that deletion of the type 1 BMP receptor ALK1 in macrophages abolished BMP9-mediated protection against polymicrobial sepsis in vivo. Further experiments indicated that the regulation of macrophage activation by the BMP9-ALK1 axis was mainly mediated through the suppressor of mother against decapentaplegic 1/5 signaling pathway. Together, these results suggest that BMP9 can both serve as a biomarker for patient stratification with an independent prognostic value and be developed as a host-directed therapy for sepsis.


Assuntos
Fator 2 de Diferenciação de Crescimento , Sepse , Humanos , Animais , Camundongos , Fator 2 de Diferenciação de Crescimento/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Prognóstico , Transdução de Sinais
6.
Curr Biol ; 33(21): 4582-4598.e10, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37858340

RESUMO

Abl family kinases are evolutionarily conserved regulators of cell migration and morphogenesis. Genetic experiments in Drosophila suggest that Abl family kinases interact functionally with microtubules to regulate axon guidance and neuronal morphogenesis. Vertebrate Abl2 binds to microtubules and promotes their plus-end elongation, both in vitro and in cells, but the molecular mechanisms by which Abl2 regulates microtubule (MT) dynamics are unclear. We report here that Abl2 regulates MT assembly via condensation and direct interactions with both the MT lattice and tubulin dimers. We find that Abl2 promotes MT nucleation, which is further facilitated by the ability of the Abl2 C-terminal half to undergo liquid-liquid phase separation (LLPS) and form co-condensates with tubulin. Abl2 binds to regions adjacent to MT damage, facilitates MT repair via fresh tubulin recruitment, and increases MT rescue frequency and lifetime. Cryo-EM analyses strongly support a model in which Abl2 engages tubulin C-terminal tails along an extended MT lattice conformation at damage sites to facilitate repair via fresh tubulin recruitment. Abl2Δ688-790, which closely mimics a naturally occurring splice isoform, retains binding to the MT lattice but does not bind tubulin, promote MT nucleation, or increase rescue frequency. In COS-7 cells, MT reassembly after nocodazole treatment is greatly slowed in Abl2 knockout COS-7 cells compared with wild-type cells, and these defects are rescued by re-expression of Abl2, but not Abl2Δ688-790. We propose that Abl2 locally concentrates tubulin to promote MT nucleation and recruits it to defects in the MT lattice to enable repair and rescue.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Chlorocebus aethiops , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Movimento Celular , Células COS , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
7.
Nutrients ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904265

RESUMO

Gut microbial dysbiosis influences the development of sarcopenia. This case-control study explored the gut microbiota composition in elderly Chinese women with sarcopenia. The information from 50 cases and 50 controls was collected. Grip strength, body weight, body mass index, skeletal muscle mass, energy intake, and total and high-quality protein intake were lower in cases than in controls (p < 0.05). Gut microbiota metagenomic sequencing showed that phylum Bacteroides was significantly reduced in the case group, whereas genus Prevotella was more abundant (p < 0.05). Linear discriminant analysis (LDA) effect size showed that 9 and 13 distinct microbial taxa were enriched in the case and control groups, respectively (LDA > 2, p < 0.05), among which Prevotella copri and Bifidobacterium longum were significantly different (LDA > 4, p < 0.05). The AUC of Bifidobacterium longum was 0.674 (95% CI: 0.539-0.756). Elderly women with sarcopenia exhibited significantly different gut microbiota compositions than healthy controls.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Sarcopenia , Humanos , Feminino , Idoso , Bifidobacterium , Estudos de Casos e Controles , Biomarcadores
8.
Proc Natl Acad Sci U S A ; 120(13): e2202815120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943880

RESUMO

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice. A bipartite motif containing both canonical and noncanonical interaction modules was identified at the C-terminal tail region of NUP153. The canonical cargo-targeting phenylalanine-glycine (FG) motif engaged the CA hexamer. By contrast, a previously unidentified triple-arginine (RRR) motif in NUP153 targeted HIV-1 capsid at the CA tri-hexamer interface in the capsid. HIV-1 infection studies indicated that both FG- and RRR-motifs were important for the nuclear import of HIV-1 cores. Moreover, the presence of NUP153 stabilized tubular CA assemblies in vitro. Our results provide molecular-level mechanistic evidence that NUP153 contributes to the entry of the intact capsid into the nucleus.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/metabolismo , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Infecções por HIV/metabolismo , Poro Nuclear/metabolismo
9.
Phys Chem Chem Phys ; 25(11): 7965-7973, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866752

RESUMO

The research of two-dimensional multiferroic materials has attracted extensive attention in recent years. In this work, we systematically investigated the multiferroic properties of semi-fluorinated and semi-chlorinated graphene and silylene X2M (X = C, Si; M = F, Cl) monolayers under strain using first principles calculations based on density functional theory. We find that the X2M monolayer has a frustrated antiferromagnetic order, and a large polarization with a high reversal potential barrier. When increasing the applied biaxial tensile strain, the magnetic order remains unchanged, but the polarization flipping potential barrier of X2M gradually decreases. When the strain increases to 35%, although the energy required to flip the fluorine and chlorine atoms is still very high in the C2F and C2Cl monolayers, it goes down to 312.5 meV and 260 meV in unit cells of the Si2F and Si2Cl monolayers, respectively. At the same time, both semi-modified silylenes exhibit metallic ferroelectricity with a band gap of at least 0.275 eV in the direction perpendicular to the plane. The results of these studies show that Si2F and Si2Cl monolayers may become a new generation of information storage materials with magnetoelectric multifunctional properties.

11.
Nat Struct Mol Biol ; 30(4): 425-435, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807645

RESUMO

Delivering the virus genome into the host nucleus through the nuclear pore complex (NPC) is pivotal in human immunodeficiency virus 1 (HIV-1) infection. The mechanism of this process remains mysterious owing to the NPC complexity and the labyrinth of molecular interactions involved. Here we built a suite of NPC mimics-DNA-origami-corralled nucleoporins with programmable arrangements-to model HIV-1 nuclear entry. Using this system, we determined that multiple cytoplasm-facing Nup358 molecules provide avid binding for capsid docking to the NPC. The nucleoplasm-facing Nup153 preferentially attaches to high-curvature regions of the capsid, positioning it for tip-leading NPC insertion. Differential capsid binding strengths of Nup358 and Nup153 constitute an affinity gradient that drives capsid penetration. Nup62 in the NPC central channel forms a barrier that viruses must overcome during nuclear import. Our study thus provides a wealth of mechanistic insight and a transformative toolset for elucidating how viruses like HIV-1 enter the nucleus.


Assuntos
HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , HIV-1/metabolismo , Linhagem Celular , Transporte Ativo do Núcleo Celular/genética , Proteínas do Capsídeo/metabolismo , DNA/metabolismo , Poro Nuclear/metabolismo
12.
J Am Chem Soc ; 145(2): 1292-1300, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36577119

RESUMO

The DNA-origami technique has enabled the engineering of transmembrane nanopores with programmable size and functionality, showing promise in building biosensors and synthetic cells. However, it remains challenging to build large (>10 nm), functionalizable nanopores that spontaneously perforate lipid membranes. Here, we take advantage of pneumolysin (PLY), a bacterial toxin that potently forms wide ring-like channels on cell membranes, to construct hybrid DNA-protein nanopores. This PLY-DNA-origami complex, in which a DNA-origami ring corrals up to 48 copies of PLY, targets the cholesterol-rich membranes of liposomes and red blood cells, readily forming uniformly sized pores with an average inner diameter of ∼22 nm. Such hybrid nanopores facilitate the exchange of macromolecules between perforated liposomes and their environment, with the exchange rate negatively correlating with the macromolecule size (diameters of gyration: 8-22 nm). Additionally, the DNA ring can be decorated with intrinsically disordered nucleoporins to further restrict the diffusion of traversing molecules, highlighting the programmability of the hybrid nanopores. PLY-DNA pores provide an enabling biophysical tool for studying the cross-membrane translocation of ultralarge molecules and open new opportunities for analytical chemistry, synthetic biology, and nanomedicine.


Assuntos
Nanoporos , Lipossomos/metabolismo , Membrana Celular/metabolismo , Difusão , DNA/química
13.
PLoS Negl Trop Dis ; 16(11): e0010773, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417454

RESUMO

BACKGROUND: To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS: The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE: This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.


Assuntos
Imunoglobulina G , Vacinas , Humanos , Plasmodium vivax , Estudos Soroepidemiológicos , Formação de Anticorpos
14.
Nutrients ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745187

RESUMO

Effective nutrition and exercise interventions may improve sarcopenia in the elderly. The purpose of our study was to investigate the effectiveness of Internet-based nutrition and exercise interventions in the elderly with sarcopenia. Participants were divided into 4 groups: control, nutrition, exercise, and comprehensive (nutrition plus exercise) groups; there was at least 50 participants in each group. Our trial lasted 12 weeks. We conducted dietary and exercise interventions through an app and collected feedback from the participants every three weeks. Information on the diet, skeletal muscle mass, and muscle function was collected before and after the interventions. The comprehensive group had higher high-quality protein intake than the control (p = 0.017) and exercise (p = 0.012) groups. After the interventions, we obtained differences in skeletal muscle mass, skeletal muscle mass/height2, skeletal muscle mass/weight, muscle mass/BMI, and skeletal muscle mass/body fat percentage (p < 0.05). Changes in average daily energy and total daily protein intakes were not significantly different; however, there was an overall improvement in the intervention groups relative to baseline data. There were no changes in the average daily time of moderate physical activity. The Internet was an effective tool of nutrition intervention in the elderly with sarcopenia. The Internet-based nutrition intervention improved high-quality protein intake and skeletal muscle mass in the elderly with sarcopenia.


Assuntos
Sarcopenia , Idoso , Composição Corporal , Terapia por Exercício , Humanos , Internet , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Estado Nutricional , Sarcopenia/metabolismo , Sarcopenia/prevenção & controle
15.
RSC Adv ; 12(7): 3788-3795, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425405

RESUMO

A new type of monoethanolamine (MEA) and Mn4+ co-doped KTF : MEAH+, Mn4+ (K2TiF6 : 0.1MEAH+, 0.06Mn4+) red emitting phosphor was synthesized by an ion exchange method. The prepared Mn4+ co-doped organic-inorganic hybrid red phosphor exhibits sharp red emission at 632 nm and the emission intensity at room temperature is 1.43 times that of a non-hybrid control sample KTF : Mn4+ (K2TiF6 : 0.06Mn4+). It exhibits good luminescent thermal stability at high temperatures, and the maximum integrated PL intensity at 150 °C is 2.34 times that of the initial value at 30 °C. By coating a mixture of KTF : MEAH+, Mn4+, a yellow phosphor (YAG : Ce3+) and epoxy resin on a blue InGaN chip, a prototype WLED (white light-emitting diode) with CCT = 3740 K and R a = 90.7 is assembled. The good performance of the WLED shows that KTF : MEAH+, Mn4+ can provide a new choice for the synthesis of new Mn4+ doped fluoride phosphors.

16.
Nat Commun ; 13(1): 1638, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347138

RESUMO

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
17.
FASEB J ; 36(3): e22198, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199390

RESUMO

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Assuntos
Sítio Alostérico , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
18.
Nutr J ; 21(1): 7, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093086

RESUMO

BACKGROUND: Pregnant women in Shanghai have long been at risk for mild iodine deficiency. Because thyroid autoimmunity in pregnant women can lead to premature birth and miscarriage as well as neurodevelopmental deficits in the fetus, the aim of this study was to explore the association of iodine nutrition status with thyroid antibodies during pregnancy. METHODS: A pregnancy-birth cohort was conducted including 4635 pregnant women in Shanghai, China. The eligible participants underwent a face-to-face interview and completed questionnaire surveys to collect baseline information and diet intake. Spot urine samples were collected to test urine iodine. Thyroid antibodies including thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb) and thyrotrophic antibodies (TRAb) were tested. Single-factor analysis and logistic regression were used to evaluate the association between iodine status and thyroid autoimmunity during pregnancy. RESULTS: The median urinary iodine excretion level in the sample was 138.14 µg/L (interquartile range [IQR] 80.90-219.00 µg/L). Among all the subjects, 25.9% consumed non-iodized salt, 54.5% had iodine deficiency, and 31.0% had thyroid autoimmunity. The proportion of patients with iodine deficiency was significantly higher among those who consumed non-iodized salt (36.9% vs. 33.1%; p = 0.04). After adjusting for age, educational status, former smoker status, former drinker status, first pregnancy, and previous thyroid disease, non-iodized salt (odds ratio [OR] = 1.394 [confidence interval, CI, 1.165-1.562]; p = 0.003), iodine-rich food (OR = 0.681 [CI 0.585-0.793]; p = 0.003), iodized nutritional supplements (OR = 0.427 [CI 0.347-0.526]; p = 0.003), were found to be individually associated with thyroid autoimmunity in all participants. The results of the multivariable restricted cubic spline regression analysis showed a non-linear relationship between the continuous change in iodine intake and thyroid autoimmunity (p = 0.019). Participants with iodine deficiency (urinary iodine concentration, UIC,< 100 µg/L) had an increased risk of testing positive for thyroid antibodies (TPOAb/TgAb/TRAb[+]; OR = 1.324 [CI 1.125-1.559]; p < 0.001). Moreover, this associated existed even after removing participants with previous thyroid disease. CONCLUSION: Inadequate iodine nutrition in pregnant women is an independent risk factor for thyroid autoimmunity in Shanghai. It's important to maintain the adequate iodine status in pregnant women.


Assuntos
Iodo , Autoimunidade , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Iodo/urina , Estado Nutricional , Gravidez , Gestantes , Cloreto de Sódio na Dieta/análise , Tireoglobulina , Glândula Tireoide , Tireotropina
19.
Viruses ; 13(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835048

RESUMO

The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.


Assuntos
Núcleo Celular/metabolismo , HIV-1/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Núcleo Celular/virologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Poro Nuclear/metabolismo , Transcrição Reversa , Integração Viral , Desenvelopamento do Vírus
20.
Phys Chem Chem Phys ; 23(45): 25817-25823, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761775

RESUMO

In recent years, the research on the physical properties of two-dimensional (2D) materials has attracted much attention. In this paper, the magnetic and ferroelectric (FE) properties of semi-hydrogenated graphene, silylene and germanene X2H (X = C, Si, and Ge) under strain are systematically investigated. The results have shown that X2H is a magnetic FE semiconductor with ferromagnetic (FM) and FE structures, both perpendicular to the plane, a large energy gap, and a high polarization reversal barrier. It is found that both the polarization reversal barrier and the magnitude of FE polarization gradually decrease, but the FM state remains the same, upon gradually increasing the tensile strain. As the tensile strain is increased to 19%, the barriers of the Si2H and Ge2H monolayer films to flip a single valence bond are decreased to 1.123 eV and 0.768 eV, respectively, and the systems still maintain semiconductor characteristics. When the strain is increased to 20%, the films begin to show metallicity in the plane of films, but still have the polarity perpendicular to the plane because of the anisotropy of the band structure. These research results suggest that the magnetoelectric properties of Si2H and Ge2H monolayer films provide the possibility for achieving a new generation of information storage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA