Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312942, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354694

RESUMO

High entropy alloys and metallic glasses, as two typical metastable nanomaterials, have attracted tremendous interest in energy conversion catalysis due to their high reactivity in nonequilibrium states. Herein, a novel nanomaterial, layered high entropy metallic glass (HEMG), in a higher energy state than low-entropy alloys and its crystalline counterpart due to both the disordered elemental and structural arrangements, is synthesized. Specifically, the MnNiZrRuCe HEMG exhibits highly enhanced photothermal catalytic activity and long-term stability. An unprecedented CO2 methanation rate of 489 mmol g-1 h-1 at 330 °C is achieved, which is, to the authors' knowledge, the highest photothermal CO2 methanation rate in flow reactors. The remarkable activity originates from the abundant free volume and high internal energy state of HEMG, which lead to the extraordinary heterolytic H2 dissociation capacity. The high-entropy effect also ensures the excellent stability of HEMG for up to 450 h. This work not only provides a new perspective on the catalytic mechanism of HEMG, but also sheds light on the great catalytic potential in future carbon-negative industry.

2.
ACS Biomater Sci Eng ; 9(11): 6225-6240, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906514

RESUMO

There is an urgent demand for antibacterial bone grafts in clinics. Worryingly, the misuse and overuse of antibiotics accelerate the emergence of drug-resistant bacteria. Therefore, this study prepared a novel injectable bioceramic cement without antibiotics (FS-BCS), which showed good antibacterial properties by loading iron and strontium onto a matrix composed of brushite and calcium sulfate. The setting time, injectability, microstructure, antibacterial properties, anti-biofilm properties, and cytocompatibility of the novel bioceramic cement were evaluated thoroughly. The results showed that the material was highly injectable and antiwashout. The antibacterial tests revealed that FS-BCS inhibited the growth of 99.9% E. coli and S. aureus separately in the broth due to the synergistic effect of strontium and iron. Simultaneously, crystal violet and fluorescent staining tests revealed that the material could significantly inhibit the formation of E. coli and S. aureus biofilms. In addition, the co-incorporation of iron and strontium promoted the proliferation and migration of osteoblasts. Therefore, FS-BCS has good application potential in antibiotic-free anti-infection bone grafting using minimally invasive surgery.


Assuntos
Escherichia coli , Staphylococcus aureus , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Ferro/farmacologia , Estrôncio/farmacologia , Procedimentos Cirúrgicos Minimamente Invasivos
3.
J Am Chem Soc ; 145(25): 13788-13795, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294126

RESUMO

Despite stunning progress in single-atom catalysis (SAC), it remains a grand challenge to yield a high loading of single atoms (SAs) anchored on substrates. Herein, we report a one-step laser-planting strategy to craft SAs of interest under an atmospheric temperature and pressure on various substrates including carbon, metals, and oxides. Laser pulses render concurrent creation of defects on the substrate and decomposition of precursors into monolithic metal SAs, which are immobilized on the as-produced defects via electronic interactions. Laser planting enables a high defect density, leading to a record-high loading of SAs of 41.8 wt %. Our strategy can also synthesize high-entropy SAs (HESAs) with the coexistence of multiple metal SAs, regardless of their distinct characteristics. An integrated experimental and theoretical study reveals that superior catalytic activity can be achieved when the distribution of metal atom content in HESAs resembles the distribution of their catalytic performance in a volcano plot of electrocatalysis. The noble-metal mass activity for a hydrogen evolution reaction within HESAs is 11-fold over that of commercial Pt/C. The laser-planting strategy is robust, opening up a simple and general route to attaining an array of low-cost, high-density SAs on diverse substrates under ambient conditions for electrochemical energy conversion.

4.
iScience ; 26(4): 106326, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36950114

RESUMO

Developing active and cost-effective bifunctional electrocatalysts for overall water splitting is challenging but mandatory for renewable energy technologies. We report a high-entropy alloy (HEA) of PtIrCuNiCr as a bifunctional electrocatalyst for overall water splitting, which shows a low overpotential of ca. 190 mV at the current density of 10 mA cm-2. Compared with pure metals, HEAs exhibit remarkable surface strain due to severe lattice distortion in their crystal structures. Theoretical calculations reveal that the strain can regulate the binding energy of intermediates on catalysts by adjusting the metal-metal bonding energy. It pushes the HEA toward the top of volcano plots to achieve superior electrocatalytic activity for both hydrogen and oxygen evolution reactions. The strain effect of HEAs on electrocatalysis can be well engineered by tuning the catalyst radius or configurational entropy. This work renders a systematic strain regulation strategy for designing a high-performance HEA catalyst for overall water splitting.

5.
Biomater Sci ; 10(13): 3433-3440, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35666242

RESUMO

Photocatalytic materials absorb photons ranging from the ultraviolet to near-infrared region to initiate photocatalytic reactions and have broad application prospects in various fields. However, high-energy ionizing radiations are rarely involved in photocatalytic research. In this study, we proposed a high-energy radiation-based photocatalysis method, namely "radiocatalysis", and prepared a TiO2-coated lanthanide pyrosilicate scintillator (LnPS@TiO2) as the radiocatalytic material. The lanthanide pyrosilicate post-radiation scintillators can efficiently convert radiation energy into ultraviolet energy, which can be resonantly transferred to TiO2 to selectively generate high-yield superoxide radicals (). Compared with traditional radiotherapy, this radiocatalytic process can significantly kill cancer cells while achieving long-term DNA damage by inhibiting the DNA self-repair process. Our research expands the energy response range of photocatalysis and is expected to extend radiocatalysis to the tumor treatment field.


Assuntos
Elementos da Série dos Lantanídeos , Neoplasias , DNA , Dano ao DNA , Humanos , Superóxidos
6.
Nat Commun ; 12(1): 6363, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737293

RESUMO

Energy band alignment theory has been widely used to understand interface charge transfer in semiconductor/semiconductor heterojunctions for solar conversion or storage, such as quantum-dot sensitized solar cells, perovskite solar cells and photo(electro)catalysis. However, abnormally high open-circuit voltage and charge separation efficiency in these applications cannot be explained by the classic theory. Here, we demonstrate a Faradaic junction theory with isoenergetic charge transfer at semiconductor/semiconductor interface. Such Faradaic junction involves coupled electron and ion transfer, which is substantively different from the classic band alignment theory only involving electron transfer. The Faradaic junction theory can be used to explain these abnormal results in previous studies. Moreover, the characteristic of zero energy loss of charge transfer in a Faradaic junction also can provide a possibility to design a solar conversion device with a large open-circuit voltage beyond the Shockley-Queisser limit by the band alignment theory.

7.
Natl Sci Rev ; 8(8): nwab104, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34691720

RESUMO

Aerospace milestones in human history, including returning to the moon and manned Martian missions, have been implemented in recent years. Space exploration has become one of the global common goals, and to ensure the survival and development of human beings in the extraterrestrial extreme environment has been becoming the basic ability and technology of manned space exploration. For the purpose of fulfilling the goal of extraterrestrial survival, researchers in Nanjing University and the China Academy of Space Technology proposed extraterrestrial artificial photosynthesis (EAP) technology. By simulating the natural photosynthesis of green plants on the Earth, EAP converts CO2/H2O into fuel and O2 in an in-situ, accelerated and controllable manner by using waste CO2 in the confined space of spacecraft, or abundant CO2 resources in extraterrestrial celestial environments, e.g. Mars. Thus, the material loading of manned spacecraft can be greatly reduced to support affordable and sustainable deep space exploration. In this paper, EAP technology is compared with existing methods of converting CO2/H2O into fuel and O2 in the aerospace field, especially the Sabatier method and Bosch reduction method. The research progress of possible EAP materials for in-situ utilization of extraterrestrial resources are also discussed in depth. Finally, this review lists the challenges that the EAP process may encounter, which need to be focused on for future implementation and application. We expect to deepen the understanding of artificial photosynthetic materials and technologies, and aim to strongly support the development of manned spaceflight.

8.
Small ; 17(45): e2103412, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34569148

RESUMO

High-entropy materials (HEMs) with unique configuration and physicochemical properties have attracted intensive research interest. However, 2D HEMs have not been reported yet. To find out unique properties of combining 2D materials and HEMs, a series of 2D high-entropy hydrotalcites (HEHs) is created by coprecipitation method, including quinary, septenary, and even novenary metallic elements. It is found that the fast synthetic kinetics of coprecipitation process conquers the thermodynamically solubility limitation of different elements, which is the prerequisite condition to form HEHs. As the oxygen evolution reaction (OER) electrocatalysts, HEHs show significantly decreased apparent activation energy compared with low-entropy hydrotalcites (LEHs) due to the lattice distortion induced by the multimetallic character of HEHs. This work opens up a new avenue for the development of 2D HEMs, which broadens the family of HEMs and presents a most promising platform for exploring the unknown properties of HEMs.

9.
Angew Chem Int Ed Engl ; 60(10): 5257-5261, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33251671

RESUMO

Green production of NH3 , especially the Li-mediated electrochemical N2 reduction reaction (NRR) in non-aqueous solutions, is attracting research interest. Controversies regarding the NRR mechanism greatly impede its optimization and wide applications. To understand the electrocatalytic process, we treated Au coated carbon fibrous paper (Au/CP) as the model catalyst. In situ XRD confirmed the transformation of lithium intermediates during NRR. Au greatly improved electron transfer kinetics to catalyze metallic Li formation, and accordingly highly accelerated spontaneous NRR. The Faradaic efficiency of NRR on Au/CP reached 34.0 %, and NH3 yield was as high as 50 µg h-1 cm-2 . Our research shows that the key step of Li-mediated non-aqueous NRR is electrocatalytic Li reduction and offers a novel electrocatalyst design method for Li reduction.

10.
Nanoscale ; 12(27): 14676-14681, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32617544

RESUMO

Porous carbon microtubule (PCMT)-scaffolding semiconductor heterostructures were exquisitely designed through the in situ growth of ZnIn2S4 (ZIS) ultrathin nanosheets onto In2O3 nanoparticle layers generated on the surface PCMT (abbreviated as PCMT@In2O3/ZIS) toward the efficient photocatalytic conversion of CO2 into CO. The pronounced photocatalytic performance for CO2 photoreduction into CO is attributed to a synergistic effect of the following factors: (1) the multistage hopping of the charge carriers among In2O3, ZIS, and PCMT greatly reduces the charge recombination in In2O3 and ZIS. (2) The mesoporous feature of the PCMT renders the large surface area and abundant active sites to accumulate the local concentration of CO2 in the heterostructures. (3) The existence of a large amount of carbon defects in PCMT promotes the activity of the absorbed CO2 molecules. (4) The tubular structures with two open ends of PCMT may favor the fast diffusion of the reactants and products, and the optical absorption can also be increased by multi-light scattering/reflection in the interior void. (5) The unique fabrication route leads to an intimate and tight contact among PCMT, In2O3, and ZIS, which is also favorable for the charge migration. This work makes a contribution to the development of a complex hollow photocatalysis system for artificial photosynthesis.

11.
Chem Commun (Camb) ; 55(33): 4777-4780, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30951063

RESUMO

A highly symmetrical, 24-faceted, concave BiVO4 polyhedron was fabricated, bounded by multiple high-index {012}, {210}, {115}, and {511} facets, exhibiting impressive photocatalytic O2 evolution for water oxidation in the absence of any cocatalysts, more than two orders of magnitude higher than that of the bulk materials. The corresponding apparent quantum yield (AQY) of O2 evolution was measured as high as 30.7% under 420 nm light irradiation, a new record AQY for BiVO4. The high-index facets are not only energetically favorable for water dissociation, but also exhibit an obvious reduction in the overpotential (0.7-1.0 V) for the oxygen evolution reaction.

12.
Nanoscale ; 11(3): 1451, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30604819

RESUMO

Correction for 'Direct Z scheme-fashioned photoanode systems consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers toward enhanced photoelectrochemical water splitting performance' by Yong Zhou et al., Nanoscale, 2019, DOI: 10.1039/c8nr08292h.

13.
Nanoscale ; 11(1): 109-114, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30534720

RESUMO

An elegant Z-scheme-fashioned photoanode consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers was rationally constructed. The photocurrent density of the Sb2Se3-Fe2O3 Z-scheme photoanode reached 3.07 mA cm-2 at 1.23 V vs. RHE, three times higher than that of pristine Fe2O3 at 1.03 mA cm-2. An obvious cathodic shift of the photocurrent onset potential of about 200 mV was also observed. The transient photovoltage response demonstrates that the suitable band edges (ECB ∼ -0.4 eV and EVB ∼ 0.8 eV) of Sb2Se3, match well with Fe2O3 (ECB ∼ 0.29 eV and EVB ∼ 2.65 eV), permitting the photoexcited electrons on the conduction band of the Fe2O3 to transfer to the valence band of Sb2Se3, and recombine with the holes therein, thus allowing a high concentration of holes to collect in the Fe2O3 for water oxidation. The transient absorption spectra further corroborate that the built-in electric field in the p-n heterojunction leads to a more effective separation and a longer lifetime of the charge carriers.

14.
Nanoscale ; 10(41): 19621-19627, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30325386

RESUMO

ZnO/CdS-based nanorod arrays (NRs) are an excellent class of photoanode materials, which possess high photoelectric response for solar-driven water splitting. A highly efficient photoanode system consisting of Al-doped ZnO NRs as effective electron-transfer layers and CdS as a light harvesting layer was rationally designed. Al doping increased the conductivity of ZnO NRs and simultaneously coarsened the surface of ZnO due to expansion of ZnO lattice. The rough surface favoured the growth of a CdS coating layer on it through a successive ionic layer adsorption reaction. The integrated ZnO/CdS photoanode exhibited photocurrent of 10.4 mA cm-2 at 1.23 V versus RHE (reversible hydrogen potential) and conversion efficiency of 5.75% at 0.38 V versus RHE for 60 SILAR CdS cycles. The coating of a protective Al2O3 passivation layer through the direct current magnetron sputtering technique significantly improved the stability of the electrode, and it was better than that of the conventional atomic layer deposition method.

15.
ACS Appl Mater Interfaces ; 10(27): 23018-23028, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912547

RESUMO

The octahedral core-shell Li-rich layered cathode material of Li1.2Mn0.54Ni0.13Co0.13O2 can be synthesized via an ingenious coprecipitation-gel method without subsequent annealing. On the basis of detailed X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy characterizations, it is suggested that the as-prepared material consists of an octahedral morphology and a new type of core-shell structure with a spinel-layered heterostructure inside, which is the result of overgrowth of the spinel structure with {111} facets on {001} facets of the layered structure in a single orientation. The surface area of Li1.2Mn0.54Ni0.13Co0.13O2 crystals where the spinel phase is located possesses sufficient Li and O vacancies, resulting in the reinsertion of Li into position after the first charge and maintenance of the interface stability via the replenishment of oxygen from the bulk region. Compared to that synthesized by the traditional coprecipitation method, the Li1.2Mn0.54Ni0.13Co0.13O2 synthesized by the coprecipitation-gel method exhibits higher discharge capacity and Coulombic efficiency, from 73.9% and 251.5 mAh g-1 for the spherical polycrystal material to 86.2% and 291.4 mAh g-1.

16.
J Phys Chem Lett ; 9(13): 3598-3603, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29905077

RESUMO

Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( Voc) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI2-capped PbSe (PbSe-PbI2) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm2) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a Voc of 0.616 V, which is the highest Voc among PbSe CQDSCs reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA