Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 259: 116379, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749288

RESUMO

The emerging wearable plant sensors demonstrate the capability of in-situ measurement of physiological and micro-environmental information of plants. However, the stretchability and breathability of current wearable plant sensors are restricted mainly due to their 2D planar structures, which interfere with plant growth and development. Here, origami-inspired 3D wearable sensors have been developed for plant growth and microclimate monitoring. Unlike 2D counterparts, the 3D sensors demonstrate theoretically infinitely high stretchability and breathability derived from the structure rather than the material. They are adjusted to 100% and 111.55 mg cm-2·h-1 in the optimized design. In addition to stretchability and breathability, the structural parameters are also used to control the strain distribution of the 3D sensors to enhance sensitivity and minimize interference. After integrating with corresponding sensing materials, electrodes, data acquisition and transmission circuits, and a mobile App, a miniaturized sensing system is produced with the capability of in-situ and online monitoring of plant elongation and microclimate. As a demonstration, the 3D sensors are worn on pumpkin leaves, which can accurately monitor the leaf elongation and microclimate with negligible hindrance to plant growth. Finally, the effects of the microclimate on the plant growth is resolved by analyzing the monitored data. This study would significantly promote the development of wearable plant sensors and their applications in the fields of plant phenomics, plant-environment interface, and smart agriculture.


Assuntos
Técnicas Biossensoriais , Microclima , Desenvolvimento Vegetal , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Humanos , Desenho de Equipamento , Folhas de Planta/química , Cucurbita/crescimento & desenvolvimento
2.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447965

RESUMO

This paper presents a personalized and smart flowerpot for ornamental horticulture, integrating 3D printing and cloud technology to address existing design limitations and enable real-time monitoring of environmental parameters in plant cultivation. While 3D printing and cloud technology have seen widespread adoption across industries, their combined application in agriculture, particularly in ornamental horticulture, remains relatively unexplored. To bridge this gap, we developed a flowerpot that maximizes space utilization, simplicity, personalization, and aesthetic appeal. The shell was fabricated using fused deposition modeling (FDM) in 3D printing, and an Arduino-based control framework with sensors was implemented to monitor critical growth factors such as soil moisture, temperature, humidity, and light intensity. Real-time data are transmitted to the Bamfa Cloud through Wi-Fi, and a mobile application provides users with instant access to data and control over watering and lighting adjustments. Our results demonstrate the effectiveness of the smart flowerpot in enabling automated monitoring of plant growth and environmental control. This innovation holds significant promise for advancing smart device development in ornamental horticulture and other related fields, enhancing efficiency, plant health, and overall user experience. Future research in this area has the potential to revolutionize horticultural practices and contribute to the advancement of smart agriculture.


Assuntos
Computação em Nuvem , Aplicativos Móveis , Impressão Tridimensional , Temperatura , Horticultura
3.
Plant Phenomics ; 5: 0051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408737

RESUMO

The advancement of plant phenomics by using optical imaging-based phenotyping techniques has markedly improved breeding and crop management. However, there remains a challenge in increasing the spatial resolution and accuracy due to their noncontact measurement mode. Wearable sensors, an emerging data collection tool, present a promising solution to address these challenges. By using a contact measurement mode, wearable sensors enable in-situ monitoring of plant phenotypes and their surrounding environments. Although a few pioneering works have been reported in monitoring plant growth and microclimate, the utilization of wearable sensors in plant phenotyping has yet reach its full potential. This review aims to systematically examine the progress of wearable sensors in monitoring plant phenotypes and the environment from an interdisciplinary perspective, including materials science, signal communication, manufacturing technology, and plant physiology. Additionally, this review discusses the challenges and future directions of wearable sensors in the field of plant phenotyping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA