Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Br J Anaesth ; 133(2): 296-304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839471

RESUMO

BACKGROUND: The comparative effectiveness of volatile anaesthesia and total intravenous anaesthesia (TIVA) in terms of patient outcomes after cardiac surgery remains a topic of debate. METHODS: Multicentre randomised trial in 16 tertiary hospitals in China. Adult patients undergoing elective cardiac surgery were randomised in a 1:1 ratio to receive volatile anaesthesia (sevoflurane or desflurane) or propofol-based TIVA. The primary outcome was a composite of predefined major complications during hospitalisation and mortality 30 days after surgery. RESULTS: Of the 3123 randomised patients, 3083 (98.7%; mean age 55 yr; 1419 [46.0%] women) were included in the modified intention-to-treat analysis. The composite primary outcome was met by a similar number of patients in both groups (volatile group: 517 of 1531 (33.8%) patients vs TIVA group: 515 of 1552 (33.2%) patients; relative risk 1.02 [0.92-1.12]; P=0.76; adjusted odds ratio 1.05 [0.90-1.22]; P=0.57). Secondary outcomes including 6-month and 1-yr mortality, duration of mechanical ventilation, length of ICU and hospital stay, and healthcare costs, were also similar for the two groups. CONCLUSIONS: Among adults undergoing cardiac surgery, we found no difference in the clinical effectiveness of volatile anaesthesia and propofol-based TIVA. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IOR-17013578).


Assuntos
Anestésicos Inalatórios , Anestésicos Intravenosos , Procedimentos Cirúrgicos Cardíacos , Desflurano , Complicações Pós-Operatórias , Propofol , Humanos , Propofol/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/mortalidade , Anestésicos Intravenosos/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Idoso , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/prevenção & controle , Adulto , Sevoflurano/efeitos adversos , Anestesia Intravenosa/métodos , China/epidemiologia , Tempo de Internação/estatística & dados numéricos , Anestesia por Inalação/métodos , Anestesia por Inalação/efeitos adversos , Resultado do Tratamento
2.
Drug Discov Today ; 29(6): 103986, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642703

RESUMO

EED within the PRC2 complex is crucial for chromatin regulation particularly in tumor development, making its inhibition a promising epigenetic therapeutic strategy. Significant advancement in PRC2 inhibitor development has been achieved with an approved EZH2 inhibitor in the market and with others in the clinical trials. However, current EZH2 inhibitors are limited to specific blood cancers and encounter therapeutic resistance. EED stabilizes PRC2 complex and enhances its activity through unique allosteric mechanisms, thereby acting as both a scaffold protein and a recognizer of H3K27me3 making it an attractive drug target. This review provides an overview of epigenetic therapeutic strategies targeting EED, including allosteric inhibitors, PPI inhibitors, and PROTACs, together with brief discussions on the relevant challenges, opportunities, and future directions.


Assuntos
Epigênese Genética , Complexo Repressor Polycomb 2 , Humanos , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/metabolismo , Epigênese Genética/efeitos dos fármacos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/genética , Terapia de Alvo Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Alostérica/efeitos dos fármacos
3.
Foods ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672875

RESUMO

China is a major player in the marine fish trade. The price prediction of marine fish is of great significance to socio-economic development and the fisheries industry. However, due to the complexity and uncertainty of the marine fish market, traditional forecasting methods often struggle to accurately predict price fluctuations. Therefore, this study adopts an intelligent combination model to enhance the accuracy of food product price prediction. Firstly, three decomposition methods, namely empirical wavelet transform, singular spectrum analysis, and variational mode decomposition, are applied to decompose complex original price series. Secondly, a combination of bidirectional long short-term memory artificial neural network, extreme learning machine, and exponential smoothing prediction methods are applied to the decomposed results for cross-prediction. Subsequently, the predicted results are input into the PSO-CS intelligence algorithm for weight allocation and to generate combined prediction results. Empirical analysis is conducted using data illustrating the daily sea purchase price of larimichthys crocea in Ningde City, Fujian Province, China. The combination prediction accuracy with PSO-CS weight allocation is found to be higher than that of single model predictions, yielding superior results. With the implementation of weight allocation intelligent combinatorial modelling, the prediction of marine fish prices demonstrates higher accuracy and stability, enabling better adaptation to market changes and price fluctuations.

4.
Br J Cancer ; 129(5): 884-894, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474721

RESUMO

BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers. METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa. RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts. CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.


Assuntos
Nicardipino , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Apoptose , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Nicardipino/farmacologia , Nicardipino/uso terapêutico , Complexo Repressor Polycomb 2 , Neoplasias da Próstata/tratamento farmacológico
5.
Transl Oncol ; 34: 101707, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271121

RESUMO

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

6.
Medicine (Baltimore) ; 101(26): e29692, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777001

RESUMO

Neurofilament light chain (NfL) levels have proved to be a good biomarker in cerebrospinal fluid (CSF) correlating with the degree of neuronal injury and neurodegeneration. However, little is known about the value of plasma neurofilament light chain (pNfL) levels in predicting the clinical prognosis of patients with acute cerebral infarction. This study aimed to explore whether pNfL could be used as a biomarker to predict the severity of the outcomes of acute ischemic stroke (AIS). Patients with AIS were included from the Department of Neurology of the First People's Hospital of Bengbu City from January 2018 to May 2019, as well as health control (HC). The plasma levels of NfL in patients with AIS (n = 60) at 2 days, 7 days, and 6 months after stroke, as well as in HCs (n = 60) were measured by electrochemiluminescence immunoassay(ECL) on the Meso Scale Discovery platform. Stroke severity was analyzed at admission using the National Institutes of Health Stroke Scale score. Functional outcomes were assessed at different times using the modified Rankin Scale (mRS) and Barthel Index. The mean level of pNfL in patients with ischemic stroke (IS) at 2 days (225.86 pg/L) after stroke was significantly higher than that in HC (107.02 pg/L) and gradually increased 7 days after stroke (316.23 pg/L) (P < .0001). The mean level of pNfL in patients with IS at 6 months after stroke was 173.38 pg/L, which was still significantly higher than that of HC. The levels of pNfL at 7 days after stroke independently predicted modified Rankin Scale scores (mRS) (R = 0.621, P < .001), Barthel Index (R = -0.716, P < .001), and National Institutes of Health Stroke Scale (R = -0.736, P < .001). The diagnostic severity and prognosis were evaluated by ROC curve, an area under the receiver operator curve of 0.812 (P = .001, 95% CI: 0.69-0.93) at 7 days. Plasma NfL levels reflect neuronal injury after AIS. It changes with time and has a certain relationship with prognosis and may be a promising biomarker for predicting the severity of neuroaxonal injury in patients with acute IS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Biomarcadores , Isquemia Encefálica/diagnóstico , Humanos , Filamentos Intermediários , Acidente Vascular Cerebral/diagnóstico , Estados Unidos
7.
Bio Protoc ; 11(22): e4231, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34909452

RESUMO

Bone metastasis is a frequent and lethal complication of many cancer types (i.e., prostate cancer, breast cancer, and multiple myeloma), and a cure for bone metastasis remains elusive. To recapitulate the process of bone metastasis and understand how cancer cells metastasize to bone, intracardiac injection and intracaudal arterial animal models were developed. The intratibial injection animal model was established to investigate the communication between cancer cells and the bone microenvironment and to mimic the setting of prostate cancer patients with bone metastasis. Given that detailed protocols of intratibial injection and its quantitative analysis are still insufficient, in this protocol, we provide hands-on procedures for how to prepare cells, perform the tibial injection, monitor tibial tumor growth, and quantitatively evaluate the tibial tumors in pathological samples. This manuscript provides a ready-to-use experimental protocol for investigating cancer cell behaviors in bone and developing novel therapeutic strategies for bone metastatic cancer patients.

8.
Pharmaceutics ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959463

RESUMO

Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effects, poor clearance, low serum stability, and high toxicity. In this study, we genetically engineered a non-cationic non-viral tumor-targeted universal siRNA nanocarrier (MW 26 KDa). This protein nanocarrier consists of three function domains: a dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidine for endosome escape, and two RGD peptides at the N- and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specifically targets integrin αvß3 expressing cells in vitro, and homes siRNA to tumors in vivo. The delivered siRNA leads to target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional and biomimetic siRNA carrier is biodegradable, has low toxicity, is suitable for mass production by fermentation, and is serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.

9.
Neoplasia ; 23(12): 1261-1274, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781084

RESUMO

A major challenge to the treatment of advanced prostate cancer (PCa) is the development of resistance to androgen-deprivation therapy (ADT) and chemotherapy. It is imperative to discover effective therapies to overcome drug resistance and improve clinical outcomes. We have developed a novel class of silicon-containing compounds and evaluated the anticancer activities and mechanism of action using cellular and animal models of drug-resistant PCa. Five organosilicon compounds were evaluated for their anticancer activities in the NCI-60 panel and established drug-resistant PCa cell lines. GH1504 exhibited potent in vitro cytotoxicity in a broad spectrum of human cancer cells, including PCa cells refractory to ADT and chemotherapy. Molecular studies identified several potential targets of GH1504, most notably androgen receptor (AR), AR variant 7 (AR-v7) and survivin. Mechanistically, GH1504 may promote the protein turnover of AR, AR-v7 and survivin, thereby inducing apoptosis in ADT-resistant and chemoresistant PCa cells. Animal studies demonstrated that GH1504 effectively inhibited the in vivo growth of ADT-resistant CWR22Rv1 and chemoresistant C4-2B-TaxR xenografts in subcutaneous and intraosseous models. These preclinical results indicated that GH1504 is a promising lead that can be further developed as a novel therapy for drug-resistant PCa.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Organossilício/farmacologia , Neoplasias de Próstata Resistentes à Castração , Animais , Linhagem Celular , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Clin Exp Urol ; 9(4): 264-276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541025

RESUMO

Confucius said, "Good tools are prerequisite to the successful execution of a job". Among his many groundbreaking achievements, Dr. Leland W. K. Chung established several widely used prostate cancer (PCa) cell lines, including C4-2, C4-2B, and ARCaP. These cellular models have been pivotal tools to enhance our understanding of the biology of PCa progression and assist in the discovery of new strategies to treat metastatic, castration-resistant PCa. Recent studies in the ARCaP PCa progression model uncovered epithelial protein lost in neoplasm (EPLIN), an actin-binding protein with an indispensable role in the maintenance of epithelial structures, as a negative regulator of epithelial-mesenchymal transition. Clinical evidence further supports the potential role of EPLIN in controlling metastasis in PCa and other solid tumors. In this article, we review the current understanding of the biology of EPLIN and the ARCaP model in the discovery of new agents for the prevention and treatment of PCa metastasis.

11.
Curr Top Med Chem ; 21(31): 2771-2777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34544341

RESUMO

The polycomb repressive complex 2 (PRC2) can methylate at lysine 27 of histone H3 at the trimethylation level (H3K27me3). This leads to gene silencing and is known to be dysregulated in many cancers. PRC2 is made up of three core subunits: EZH2, SUZ12, and EED. EED is essential for the regulation of PRC2 function by binding to H3K27me3. Targeting the allosteric site within EED offers new strategies to disrupt the PRC2 activity. In this minireview, we summarize some of the recent developments in small molecules that target EED and its interaction with other core proteins in the PRC2 complex.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sítio Alostérico , Animais , Histonas/química , Histonas/metabolismo , Humanos , Metilação , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo
12.
Theranostics ; 11(14): 6873-6890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093859

RESUMO

Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Descoberta de Drogas/métodos , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Quinases Associadas a Fase S/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Survivina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 12(1): 1714, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731701

RESUMO

Advanced prostate cancer (PCa) often develops bone metastasis, for which therapies are very limited and the underlying mechanisms are poorly understood. We report that bone-borne TGF-ß induces the acetylation of transcription factor KLF5 in PCa bone metastases, and acetylated KLF5 (Ac-KLF5) causes osteoclastogenesis and bone metastatic lesions by activating CXCR4, which leads to IL-11 secretion, and stimulating SHH/IL-6 paracrine signaling. While essential for maintaining the mesenchymal phenotype and tumorigenicity, Ac-KLF5 also causes resistance to docetaxel in tumors and bone metastases, which is overcome by targeting CXCR4 with FDA-approved plerixafor. Establishing a mechanism for bone metastasis and chemoresistance in PCa, these findings provide a rationale for treating chemoresistant bone metastasis of PCa with inhibitors of Ac-KLF5/CXCR4 signaling.


Assuntos
Neoplasias Ósseas/secundário , Carcinogênese , Transição Epitelial-Mesenquimal , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Acetilação , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzilaminas/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Ciclamos/uso terapêutico , Docetaxel/uso terapêutico , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Mutação , Osteogênese , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
14.
Biochimie ; 180: 1-9, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33132158

RESUMO

Neurite outgrowth involves reciprocal signaling interactions between tumor cells and nerves where invading tumor cells have acquired the ability to respond to pro-invasive signals within the nerve environment. Neurite outgrowth could serve as a mechanism leading to invasion of cancer cells into the nerve sheath and subsequent metastasis. Snail transcription factor can promote migration and invasion of prostate cancer cells. We hypothesized that prostate cancer cell interaction with nerve cells will be mediated by Snail expression within prostate cancer cells. For this study we utilized various prostate cancer cell lines: C4-2 non-silencing (NS, control); C4-2 Snail shRNA, (stable Snail knockdown); LNCaP Neo (empty vector control) and LNCaP Snail (stably over-expressing Snail). Cancer cell adhesion and migration towards nerve cells (snF96.2 or NS20Y) was examined by co-culture assays. Conditioned media (CM) collected from C4-2 cells was cultured with nerve cells (PC-12 or NS20Y) for 48 h followed by qualitative or quantitative neurite outgrowth assay. Our results showed that cancer cells expressing high levels of Snail (LNCaP Snail/C4-2 NS) displayed significantly higher migration adherence to nerve cells, compared to cells with lower levels of Snail (LNCaP Neo/C4-2 Snail shRNA). Additionally, LNCaP Snail or C4-2 NS (Snail-high) CM led to a higher neurite outgrowth compared to the LNCaP Neo or C4-2 Snail shRNA (Snail-low). In conclusion, Snail promotes migration and adhesion to nerve cells, as well as neurite outgrowth via secretion of soluble factors. Therefore, targeting cancer cell interaction with nerves may contribute to halting prostate cancer progression/metastasis.


Assuntos
Crescimento Neuronal/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Animais , Adesão Celular/genética , Comunicação Celular/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Inativação Gênica , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Neoplasias da Próstata/patologia , Ratos
15.
Anticancer Res ; 40(11): 6051-6062, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33109543

RESUMO

BACKGROUND/AIM: Chemoresistance is a major obstacle in the treatment of prostate cancer (PCa). It is imperative to develop novel strategies for overcoming chemoresistance and improving clinical outcomes. We evaluated the in vitro activity and mechanism of action of dihydroergocristine (DHECS), an ergot alkaloid approved for the treatment of dementia, in PCa cells. MATERIALS AND METHODS: The in vitro effects of DHECS on PCa cell cycle and viability were determined by flow cytometry and colorimetric assay. The effects of DHECS on PCa cell signaling were evaluated by quantitative PCR, western blot analysis and reporter assay. RESULTS: DHECS was effective in inducing cell cycle arrest and apoptosis in human PCa cells. Of particular interest, DHECS demonstrated high potency against chemoresistant PCa cells. At the molecular level, DHECS affected multiple factors implicated in the regulation of cancer cell cycle and programmed cell death, including p53, mouse double minute 2 homolog (MDM2), retinoblastoma protein (RB), p21, E2F transcription factor 1 (E2F1), survivin, myeloid cell leukemia 1 (Mcl-1) and poly ADP ribose polymerase (PARP). Furthermore, DHECS may function through dopamine receptor-mediated effects on 5'-AMP-activated protein kinase (AMPK) and nuclear factor kappa B (NF-ĸB). CONCLUSION: DHECS has the potential to be repurposed as a novel anticancer agent for the management of chemoresistant PCa.


Assuntos
Di-Hidroergocristina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/patologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Survivina/genética , Survivina/metabolismo , Transcrição Gênica/efeitos dos fármacos
16.
Prostate ; 80(12): 993-1005, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32559345

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) is the mainstay of treatment for castration-resistant prostate cancer (CRPC). Unfortunately, although ADT initially prolongs survival, most patients relapse and develop resistance. Clinical failure of these treatments in CRPC highlights the urgent need to develop novel strategies to more effectively block androgen receptor (AR) signaling and target other oncogenic factors responsible for ADT resistance. METHODS: We developed a small-molecule compound LG1836 and investigated the in vitro and in vivo activity of LG1836 against CRPC in cellular and animal models. RESULTS: LG1836 exhibits potent in vitro cytotoxicity in CRPC cells. Mechanistic studies demonstrated that LG1836 inhibits the expression of AR and AR variant 7, partially mediated via proteasome-dependent protein degradation. LG1836 also suppresses survivin expression and effectively induces apoptosis in CRPC cells. Significantly, as a single agent, LG1836 is therapeutically efficacious in suppressing the in vivo growth of CRPC in the subcutaneous and intraosseous models and extends the survival of tumor-bearing mice. CONCLUSIONS: These preclinical studies indicate that LG1836 is a promising lead compound for the treatment of CRPC.


Assuntos
Piperidinas/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias de Próstata Resistentes à Castração/patologia , Distribuição Aleatória , Receptores Androgênicos/biossíntese , Receptores Androgênicos/metabolismo , Survivina/antagonistas & inibidores , Survivina/biossíntese , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Lett ; 446: 62-72, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660650

RESUMO

Bone metastasis is a major cause of prostate cancer (PCa) mortality. Although docetaxel chemotherapy initially extends patients' survival, in most cases PCa becomes chemoresistant and eventually progresses without a cure. In this study, we developed a novel small-molecule compound BKM1972, which exhibited potent in vitro cytotoxicity in PCa and other cancer cells regardless of their differences in chemo-responsiveness. Mechanistic studies demonstrated that BKM1972 effectively inhibited the expression of anti-apoptotic protein survivin and membrane-bound efflux pump ATP binding cassette B 1 (ABCB1, p-glycoprotein), presumably via signal transducer and activator of transcription 3 (Stat3). BKM1972 was well tolerated in mice and as a monotherapy, significantly inhibited the intraosseous growth of chemosensitive and chemoresistant PCa cells. These results indicate that BKM1972 is a promising small-molecule lead to treat PCa bone metastasis and overcome docetaxel resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Antagonistas dos Receptores da Bradicinina/farmacologia , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Organofosfonatos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Nus , Terapia de Alvo Molecular , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Survivina/genética , Survivina/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Neoplasia ; 20(8): 789-799, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29981500

RESUMO

The high prevalence and long latency period of prostate cancer (PCa) provide a unique opportunity to control disease progression with dietary and nutraceutical approaches. We developed ProFine, a standardized composition of luteolin, quercetin, and kaempferol, and investigated its potential as a nutraceutical for PCa in preclinical models. The three ingredients of ProFine demonstrated synergistic in vitro cytotoxicity and effectively induced apoptosis in PCa cells. ProFine markedly affected the transcriptome of PCa cells, suppressed the expression of androgen receptor, and inhibited androgen-regulated genes. Oral administration of ProFine did not exhibit obvious toxicities in mice, and the three ingredients retained their individual pharmacokinetic and bioavailability profiles. Importantly, ProFine significantly retarded the growth of PCa xenografts in athymic nude mice and extended the survival of animals. This study provides preclinical evidence supporting the promise of ProFine as a safe, efficacious, and affordable intervention to control PCa progression and improve clinical outcomes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Androgênios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Transcriptoma/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Mol Cancer Ther ; 17(9): 1859-1870, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29907594

RESUMO

Docetaxel resistance remains a major obstacle in the treatment of prostate cancer bone metastasis. In this study, we demonstrate that the dopamine D2 receptor (DRD2) agonist bromocriptine effectively enhances docetaxel efficacy and suppresses skeletal growth of prostate cancer in preclinical models. DRD2 is ubiquitously expressed in prostate cancer cell lines and significantly reduced in prostate cancer tissues with high Gleason score. Bromocriptine has weak to moderate cytotoxicity in prostate cancer cells, but effectively induces cell-cycle arrest. At the molecular level, bromocriptine inhibits the expression of c-Myc, E2F-1, and survivin and increases the expression of p53, p21, and p27. Intriguingly, bromocriptine markedly reduces androgen receptor levels, partially through Hsp90-mediated protein degradation. The combination of bromocriptine and docetaxel demonstrates enhanced in vitro cytotoxicity in prostate cancer cells and significantly retards the skeletal growth of C4-2-Luc tumors in mice. Collectively, these results provide the first experimental evidence for repurposing bromocriptine as an effective adjunct therapy to enhance docetaxel efficacy in prostate cancer. Mol Cancer Ther; 17(9); 1859-70. ©2018 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Reposicionamento de Medicamentos , Neoplasias da Próstata/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Bromocriptina/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/administração & dosagem , Agonistas de Dopamina/administração & dosagem , Sinergismo Farmacológico , Humanos , Masculino , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
20.
Mol Ther Nucleic Acids ; 10: 317-330, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499944

RESUMO

HER family members are interdependent and functionally compensatory. Simultaneously targeting EGFR/HER2/HER3 by antibody combinations has demonstrated superior treatment efficacy over targeting one HER receptor. However, antibody combinations have their limitations, with high immunogenicity and high cost. In this study, we have developed a three-in-one nucleic acid aptamer-small interfering RNA (siRNA) chimera, which targets EGFR/HER2/HER3 in one molecule. This inhibitory molecule was constructed such that a single EGFR siRNA is positioned between the HER2 and HER3 aptamers to create a HER2 aptamer-EGFR siRNA-HER3 aptamer chimera (H2EH3). EGFR siRNA was delivered into HER2-expressing cells by HER2/HER3 aptamer-induced internalization. HER2/HER3 aptamers act as antagonist molecules for blocking HER2 and HER3 signaling pathways and also as tumor-targeting agents for siRNA delivery. H2EH3 enables down-modulation of the expression of all three receptors, thereby triggering cell apoptosis. In breast cancer xenograft models, H2EH3 is able to bind to breast tumors with high specificity and significantly inhibits tumor growth via either systemic or intratumoral administration. Owing to low immunogenicity, ease of production, and high thermostability, H2EH3 is a promising therapeutic to supplement current single HER inhibitors and may act as a treatment for HER2+ breast cancer with intrinsic or acquired resistance to current drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA