Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 159(1): 227-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22430843

RESUMO

The pentatricopeptide repeat (PPR) gene family represents one of the largest gene families in higher plants. Accumulating data suggest that PPR proteins play a central and broad role in modulating the expression of organellar genes in plants. Here we report a rice (Oryza sativa) mutant named young seedling albino (ysa) derived from the rice thermo/photoperiod-sensitive genic male-sterile line Pei'ai64S, which is a leading male-sterile line for commercial two-line hybrid rice production. The ysa mutant develops albino leaves before the three-leaf stage, but the mutant gradually turns green and recovers to normal green at the six-leaf stage. Further investigation showed that the change in leaf color in ysa mutant is associated with changes in chlorophyll content and chloroplast development. Map-based cloning revealed that YSA encodes a PPR protein with 16 tandem PPR motifs. YSA is highly expressed in young leaves and stems, and its expression level is regulated by light. We showed that the ysa mutation has no apparent negative effects on several important agronomic traits, such as fertility, stigma extrusion rate, selfed seed-setting rate, hybrid seed-setting rate, and yield heterosis under normal growth conditions. We further demonstrated that ysa can be used as an early marker for efficient identification and elimination of false hybrids in commercial hybrid rice production, resulting in yield increases by up to approximately 537 kg ha(-1).


Assuntos
Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plântula/metabolismo , Sementes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores , Quimera/genética , Quimera/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Clonagem Molecular , Cruzamentos Genéticos , Fertilidade , Genes de Plantas , Vigor Híbrido , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Oryza/anatomia & histologia , Oryza/genética , Fotoperíodo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Sementes/genética , Transcrição Gênica
2.
Theor Appl Genet ; 114(5): 803-14, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17219209

RESUMO

Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate), or its salt form, phytate, is commonly regarded as the major anti-nutritional component in cereal and legume grains. Breeding of low phytic acid (lpa) crops has recently been considered as a potential way to increase nutritional quality of crop products. In this study, eight independent lpa rice mutant lines from both indica and japonica subspecies were developed through physical and chemical mutagenesis. Among them, five are non-lethal while the other three are homozygous lethal. None of the lethal lines could produce homozygous lpa plants through seed germination and growth under field conditions, but two of them could be rescued through in vitro culture of mature embryos. The non-lethal lpa mutants had lower PA content ranging from 34 to 64% that of their corresponding parent and four of them had an unchanged total P level. All the lpa mutations were inherited in a single recessive gene model and at least four lpa mutations were identified mutually non-allelic, while the other two remain to be verified. One mutation was mapped on chromosome 2 between microsatellite locus RM3542 and RM482, falling in the same region as the previously mapped lpa1-1 locus did; another lpa mutation was mapped on chromosome 3, tightly linked to RM3199 with a genetic distance of 1.198 cM. The latter mutation was very likely to have happened to the LOC_Os03g52760, a homolog of the maize myo-inositol kinase (EC 2.7.1.64) gene. The present work greatly expands the number of loci that could influence the biosynthesis of PA in rice, making rice an excellent model system for research in this area.


Assuntos
Oryza/genética , Oryza/metabolismo , Ácido Fítico/metabolismo , Alelos , Cruzamento , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Genes Recessivos , Repetições de Microssatélites , Mutação , Oryza/classificação , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
3.
Yi Chuan Xue Bao ; 29(11): 1005-11, 2002.
Artigo em Chinês | MEDLINE | ID: mdl-12645265

RESUMO

The segregation mode of transgenes was investigated in the transgenic progenies of three rice varieties (lines) produced by Agrobacterium-mediated transformation. The transgenic lines all contained the Bacillus thuringiensis cry1Ab gene, under the control of a maize ubiquitin promoter, and linked in tandem with gusA and hpt genes. PCR analysis showed the transgenes cry1Ab and gusA co-segregated in all self and crossed progenies tested. Therefore, GUS bio-assay of leaf or endosperm tissues was used to monitor transgene segregation in the experiment. It was found that the ratio of positive to negative plants was significantly smaller than 3:1 in all heterozygous plants derived progenies, which implied the segregation biased from typical Mendelian mode for a single dominant gene. Less GUS positive plants, and consequently less homozygous transgenic lines than expected were recovered from the self progenies. Transgenic heterozygous plants (+/-) were crossed as female or male parent to conventional rice varieties (-/-), and the ratio of gusA positive (+/-) to negative (-/-) plants was investigated in test F1 population. When used as female parent, the segregation fit to 1:1, but significantly smaller than 1:1 when used as male parent. The seed-set of transgenic Nipponbare progeny was investigated individually for GUS positive and negative plants. It was found that the positive plants had an average seed-set of 64.5%, significantly lower than that of negative plants (77.9%). The biological and genetic basis of distorted segregation of transgenes was discussed and deduced on the basis of above results, and the authors are inclined to ascribe these phenomena to the poor competitive ability of pollens carrying transgenes.


Assuntos
Toxinas Bacterianas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cruzamentos Genéticos , Endotoxinas/genética , Endotoxinas/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas Hemolisinas , Histocitoquímica , Vigor Híbrido , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA