Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
2.
Biotechnol J ; 19(2): e2300484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403446

RESUMO

BACKGROUND: Owing to the characteristics of easier access in vitro, low immunogenicity, and high plasticity, human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered as a promising cell-based drugs for clinical application. No internationally recognized technology exists to evaluate the pharmacokinetics and distribution of cell-based drugs in vivo. METHODS: We determined the human-specific gene sequence, Homo1, from differential fragments Homo sapiens mitochondrion and Rattus norvegicus mitochondrion. The expression of Homo1 was utilized to determine the distribution of UC-MSCs in the normal and diabetic nephropathy (DN) rats. RESULTS: We observed a significant correlation between the number of UC-MSCs and the expression level of Homo1. Following intravenous transplantation, the blood levels of UC-MSCs peaked at 30 min. A large amount of intravenously injected MSCs were trapped in the lungs, but the number of them decreased rapidly after 24 h. Additionally, the distribution of UC-MSCs in the kidneys of DN rats was significantly higher than that of normal rats. CONCLUSIONS: In this study, we establish a highly sensitive and specific Homo1-based real-time quantitative PCR method to quantify the distribution of human UC-MSCs in rats. The method provides guidelines for the safety research of cells in preclinical stages.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Cordão Umbilical/metabolismo
3.
Front Med (Lausanne) ; 10: 1240330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877016

RESUMO

This study aimed to characterize the safety and efficacy of DC-CIK therapy in two patients with previously treated chronic lymphocytic leukemia or peritoneal cancer, respectively. Participants had received conventional chemotherapy treatment for their specific cancers, and in addition, 1-2 treatments of DC-CIK therapy were administered to subjects over the course of 1 year. Subject A received an initial dosage of 3 intravenous infusions of DC-CIK therapy on three successive days and a repeat dosage 6 months later. Subject B received an initial dosage of 3 intravenous infusions of DC-CIK therapy on three successive days and received further chemotherapy after approximately 1 year. No treatment-related adverse events were reported, and both patients experienced favorable outcomes from the treatment, including enhanced treatment response, increased chemotherapy tolerance, and prolonged survival in comparison to typical 5-year survival rates.

4.
Cell Death Discov ; 9(1): 215, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393356

RESUMO

Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.

5.
Stem Cells Int ; 2023: 5584894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056456

RESUMO

Diabetic nephropathy (DN) is one of the microvascular complications of diabetes. Recent studies suggest that the pyroptosis of renal tubular epithelial cell plays a critical role in DN. Currently, effective therapeutic strategies to counteract and reverse the progression of DN are lacking. Mesenchymal stem cells (MSCs) represent an attractive therapeutic tool for tissue damage and inflammation owing to their unique immunomodulatory properties. However, the underlying mechanisms remain largely unknown. In the present study, we found that human umbilical cord MSCs (UC-MSCs) can effectively ameliorate kidney damage and reduce inflammation in DN rats. Importantly, UC-MSC treatment inhibits inflammasome-mediated pyroptosis in DN. Mechanistically, we performed RNA sequencing and identified that miR-342-3p was significantly downregulated in the kidneys of DN rats. Furthermore, we found that miR-342-3p was negatively correlated with renal injury and pyroptosis in DN rats. The expression of miR-342-3p was significantly increased after UC-MSC treatment. Moreover, miR-342-3p decreased the expression of Caspase1 by targeting its 3'-UTR, which was confirmed by double-luciferase assay. Using miRNA mimic transfection, we demonstrated that UC-MSC-derived miR-342-3p inhibited pyroptosis of renal tubular epithelial cells through targeting the NLRP3/Caspase1 pathway. These findings would provide a novel intervention strategy for the use of miRNA-modified cell therapy for kidney diseases.

6.
Stem Cell Res Ther ; 13(1): 171, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477552

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a common cause of end-stage renal disease (ESRD). Mesenchymal stem cells (MSCs) possess potent anti-inflammatory and immunomodulatory properties, which render them an attractive therapeutic tool for tissue damage and inflammation. METHODS: This study was designed to determine the protective effects and underlying mechanisms of human umbilical cord-derived MSCs (UC-MSCs) on streptozotocin-induced DN. Renal function and histological staining were used to evaluate kidney damage. RNA high-throughput sequencing on rat kidney and UCMSC-derived exosomes was used to identify the critical miRNAs. Co-cultivation of macrophage cell lines and UC-MSCs-derived conditional medium were used to assess the involvement of macrophage polarization signaling. RESULTS: UC-MSC administration significantly improved renal function, reduced the local and systemic inflammatory cytokine levels, and attenuated inflammatory cell infiltration into the kidney tissue in DN rats. Moreover, UC-MSCs shifted macrophage polarization from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. Mechanistically, miR-146a-5p was significantly downregulated and negatively correlated with renal injury in DN rats as determined through high-throughput RNA sequencing. Importantly, UC-MSCs-derived miR-146a-5p promoted M2 macrophage polarization by inhibiting tumor necrosis factor receptor-associated factor-6 (TRAF6)/signal transducer and activator of transcription (STAT1) signaling pathway. Furthermore, miR-146a-5p modification in UC-MSCs enhanced the efficacy of anti-inflammation and renal function improvement. CONCLUSIONS: Collectively, our findings demonstrate that UC-MSCs-derived miR-146a-5p have the potential to restore renal function in DN rats through facilitating M2 macrophage polarization by targeting TRAF6. This would pave the way for the use of miRNA-modified cell therapy for kidney diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Células-Tronco Mesenquimais , MicroRNAs , Animais , Anti-Inflamatórios/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Fator 6 Associado a Receptor de TNF , Cordão Umbilical/metabolismo
7.
Curr Stem Cell Res Ther ; 17(6): 564-575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086457

RESUMO

BACKGROUND: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) remains a serious clinical problem but has no approved pharmacotherapy. Mesenchymal stem cells (MSCs) represent an attractive therapeutic tool for tissue damage and inflammation owing to their unique immunomodulatory properties. The present study aims to explore the therapeutic effect and underlying mechanisms of human umbilical cord MSCs (UC-MSCs) in ALI mice. OBJECTIVE: In this study, we identify a novel mechanism for human umbilical cord-derived MSCs (UC-MSCs)-mediated immunomodulation through PGE2-dependent reprogramming of host macrophages to promote their PD-L1 expression. Our study suggests that UC-MSCs or primed- UC-MSCs offer new therapeutic approaches for lung inflammatory diseases. METHODS: Lipopolysaccharide (LPS)-induced ALI mice were injected with 5×105 UC-MSCs via the tail vein after 4 hours of LPS exposure. After 24 hours of UC-MSC administration, the total protein concentration and cell number in the bronchoalveolar lavage fluid (BALF) and cytokine levels in the lung tissue were measured. Lung pathological changes and macrophage infiltration after UCMSC treatment were analyzed. Moreover, in vitro co-culture experiments were performed to analyze cytokine levels of RAW264.7 cells and Jurkat T cells. RESULTS: UC-MSC treatment significantly improved LPS-induced ALI, as indicated by decreased total protein exudation concentration and cell number in BALF and reduced pathological damage in ALI mice. UC-MSCs could inhibit pro-inflammatory cytokine levels (IL-1ß, TNF-α, MCP-1, IL-2, and IFN-γ), while enhancing anti-inflammatory cytokine IL-10 expression, as well as reducing macrophage infiltration into the injured lung tissue. Importantly, UC-MSC administration increased programmed cell death protein ligand 1 (PD-L1) expression in the lung macrophages. Mechanistically, UC-MSCs upregulated cyclooxygenase-2 (COX2) expression and prostaglandin E2 (PGE2) secretion in response to LPS stimulation. UC-MSCs reduced the inflammatory cytokine levels in murine macrophage Raw264.7 through the COX2/PGE2 axis. Furthermore, UC-MSC- derived PGE2 enhanced PD-L1 expression in RAW264.7 cells, which in turn promoted programmed cell death protein 1 (PD-1) expression and reduced IL-2 and IFN-γ production in Jurkat T cells. CONCLUSION: Our results suggest that UC-MSCs attenuate ALI via PGE2-dependent reprogramming of macrophages to promote their PD-L1 expression.


Assuntos
Lesão Pulmonar Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Animais , Antígeno B7-H1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Interleucina-2/metabolismo , Ligantes , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , Cordão Umbilical
8.
Ann Transl Med ; 9(21): 1615, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34926659

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stem cells (UC-MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for tissue damage and inflammation owing to their unique immunomodulatory properties. This study was designed to determine the protective effects and underlying mechanisms of UC-MSCs on acute liver failure (ALF). METHODS: ALF was induced in mice by intraperitoneal injection of D-galactosamine (D-GalN) and lipopolysaccharide (LPS). Mice were intravenously injected with 1×106 UC-MSCs one hour before or six hours after D-GalN/LPS injection. Liver function was valued by serum biochemical parameters and hematoxylin-eosin staining. Inflammatory cytokine and chemokine levels were measured by real-time PCR, and inflammatory cells infiltration was observed by immunofluorescence staining. Hepatocyte apoptosis and pyroptosis related proteins were detected by western blot. Murine macrophage Raw264.7 in the presentation of LPS was treated with the UC-MSCs condition medium (UC-MSCs-CM), and then the levels of inflammatory cytokines and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in Raw264.7 were measured. RESULTS: UC-MSCs significantly reduced the mortality, decreased serum alanine aminotransferase and aspartate aminotransferase levels, and improved the pathological damage. Moreover, UC-MSCs inhibited inflammatory cytokine and chemokine levels, especially TNF-α, interleukins-6 (IL-6), IL-1ß, monocyte chemoattractant protein (MCP-1), CC-chemokines ligand 2 (CCL2), C-X-C motif ligand 2 (CXCL2), and reduced macrophage, neutrophil and T lymphocyte infiltration into the liver tissue. UC-MSCs also attenuated hepatocyte apoptosis, as evidenced by decreased TUNEL positive cells, increased Bcl-xl/Bax protein ratio and downregulated cleaved caspase 3 levels. NLRP3 inflammasome activation, IL-1ß maturation and cleaved caspase1 were suppressed by UC-MSC administration. Furthermore, the UC-MSCs-CM reduced the levels of inflammatory cytokines and the activation of NLRP3 inflammasome in Raw264.7. CONCLUSIONS: Our results demonstrated that UC-MSCs exerted therapeutic effects on ALF by inhibiting apoptosis, inflammation, and pyroptosis.

9.
Bone Joint Res ; 10(3): 226-236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33739851

RESUMO

AIMS: This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA). METHODS: Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry. RESULTS: Histopathological analysis showed that intra-articular injection of human UC-MSCs significantly inhibited the progression of OA, as demonstrated by reduced cartilage degradation, increased Safranin-O staining, and lower Mankin scores. Immunohistochemistry showed that human UC-MSC treatment down-regulated the expression of matrix metalloproteinase-13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and enhanced the expression of type II collagen and ki67 in the articular cartilage. Furthermore, human UC-MSCs significantly decreased the expression of interleukin (IL)-1ß and tumour necrosis factor-α (TNF-α), while increasing TNF-α-induced protein 6 and IL-1 receptor antagonist. CONCLUSION: Our results demonstrated that human UC-MSCs ameliorate MIA-induced OA by preventing cartilage degradation, restoring the proliferation of chondrocytes, and inhibiting the inflammatory response, which implies that human UC-MSCs may be a promising strategy for the treatment of OA. Cite this article: Bone Joint Res 2021;10(3):226-236.

10.
Reprod Sci ; 28(6): 1718-1732, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751459

RESUMO

Human umbilical cord mesenchymal stem cell (UC-MSC) application is a promising arising therapy for the treatment of premature ovarian failure (POF). However, little is known about the inflammation regulatory effects of human umbilical cord MSCs (UC-MSCs) on chemotherapy-induced ovarian damage, regardless of in vivo or in vitro. This study was designed to investigate the therapeutic effects of UC-MSC transplantation and underlying mechanisms regarding both apoptosis and inflammation in POF mice. The chemotherapy-induced POF models were induced by intraperitoneal injection of cyclophosphamide. Ovarian function parameters, granulosa cell (GC) apoptosis, and inflammation were examined. Morphological staining showed that UC-MSC treatment increased the ovary size, and the numbers of primary and secondary follicles, but decreased the number of atretic follicles. Estradiol levels in the UC-MSC-treated group were increased while follicle-stimulating hormone levels were reduced compared to those in the POF group. UC-MSCs inhibited cyclophosphamide-induced GC apoptosis and inflammation. Meanwhile, phosphorylation of AKT and P38 was elevated after UC-MSC treatment. Tracking of UC-MSCs in vivo indicated that transplanted UC-MSCs were only located in the interstitium of ovaries rather than in follicles. Importantly, UC-MSC-derived extracellular vesicles protected GCs from alkylating agent-induced apoptosis and inflammation in vitro. Our results suggest that UC-MSC transplantation can reduce ovary injury and improve ovarian function in chemotherapy-induced POF mice through anti-apoptotic and anti-inflammatory effects via a paracrine mechanism.


Assuntos
Apoptose/fisiologia , Inflamação/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Insuficiência Ovariana Primária/terapia , Cordão Umbilical/citologia , Animais , Antineoplásicos/efeitos adversos , Feminino , Células da Granulosa/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ovário/fisiopatologia , Comunicação Parácrina/fisiologia , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/fisiopatologia
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(10): 897-902, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33148384

RESUMO

Objective To compare the efficiency of four methods for extracting extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells(hUCMSCs). Methods EVs were isolated from the conditioned medium of hUCMSCs by ultracentrifugation (group A), or ultrafiltration combined with ultracentrifugation (group B), or ultrafiltration combined with polyethylene glycol precipitation (group C), or ultrafiltration combined with aqueous two phase system (group D). The total protein concentration of EVs in each group was determined by BCA method. The expression of Alix, CD9, and calnexin were detected by Western blotting. The morphology of EVs was analyzed by transmission electron microscopy. The particle size distribution and particle concentration of EVs were measured by nanoparticle tracking analysis. Results The total protein concentrations of EVs extracted by the above four methods were (1.92±1.77) µg/µL, (18.1±1.07) µg/µL, (6.33±1.02) µg/µL, (36.48±23.13) µg/µL from group A to D respectively. We observed the expression of CD9 and Alix, but not calnexin, in EVs from group A, B and C. However, the expression levels of CD9 and Alix were lowest in group C. In addition, the expression of CD9, Alix and calnexin were undetectable in EVs from group D. The particle concentrations of EVs in group A, B and C were 0.85×1011 particles/mL, 0.63×1011 particles/mL, 1.83×1011 particles/mL, respectively. Meanwhile, the particle distributions were all within the size range of EVs. We also observed the typical saucer-like membrane structure in EVs from group A, B and C. Conclusion The method of ultrafiltration combined with ultracentrifugation could be applied to the experiments demanding large amounts of EVs. The method of ultracentrifugation is recommended for the extraction of little amounts of EVs due to the lower risk of EV fragmentation.


Assuntos
Meios de Cultivo Condicionados , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Microscopia Eletrônica de Transmissão , Ultracentrifugação , Ultrafiltração , Cordão Umbilical/citologia
12.
J Obstet Gynaecol Res ; 46(11): 2347-2355, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32856391

RESUMO

AIM: This study was designed to evaluate the effects of intrauterine transplantation of menstrual blood stem cells (MenSCs) on endometrial thickness and pregnancy outcomes in patients with refractory intrauterine adhesion (IUA). METHODS: This study included a group of infertile women (n = 12, age 22-40 years), with refractory IUA. Autologous MenSCs isolated from the women's menstrual blood were expanded in vitro and transplanted into their uteruses, followed by hormone replacement therapy. Transvaginal ultrasound examination was performed to assess the endometrial thickness. Transabdominal ultrasound was conducted to detect pregnancy outcome. RESULTS: Autologous MenSCs were successfully isolated and expanded from menstrual blood and transplanted into the uterus of each patient. A significant improvement of the endometrial thickness was observed from 3.9 ± 0.9 to 7.5 ± 0.6 mm (P < 0.001). No adverse reaction was observed. The duration of menstruation was increased from 2.4 ± 0.7 to 5.3 ± 0.6 days (P < 0.001). Five out of 12 patients achieved clinical pregnancy and the pregnancy rate was 41.7%. CONCLUSIONS: Intrauterine transplantation of autologous MenSCs results in regeneration of endometrium, a prolongation of menstrual duration and an increase rate of pregnancy in patients with refractory IUA.


Assuntos
Infertilidade Feminina , Doenças Uterinas , Adulto , Endométrio/diagnóstico por imagem , Endométrio/cirurgia , Feminino , Humanos , Menstruação , Gravidez , Células-Tronco , Adulto Jovem
13.
Stem Cell Res Ther ; 11(1): 336, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746936

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the most serious complications of diabetes and the leading cause of end-stage chronic kidney disease. Currently, there are no effective drugs for treating DN. Therefore, novel and effective strategies to ameliorate DN at the early stage should be identified. This study aimed to explore the effectiveness and underlying mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs) in DN. METHODS: We identified the basic biological properties and examined the multilineage differentiation potential of UC-MSCs. Streptozotocin (STZ)-induced DN rats were infused with 2 × 106 UC-MSCs via the tail vein at week 6. After 2 weeks, we measured blood glucose level, levels of renal function parameters in the blood and urine, and cytokine levels in the kidney and blood, and analyzed renal pathological changes after UC-MSC treatment. We also determined the colonization of UC-MSCs in the kidney with or without STZ injection. Moreover, in vitro experiments were performed to analyze cytokine levels of renal tubular epithelial cell lines (NRK-52E, HK2) and human renal glomerular endothelial cell line (hrGECs). RESULTS: UC-MSCs significantly ameliorated functional parameters, such as 24-h urinary protein, creatinine clearance rate, serum creatinine, urea nitrogen, and renal hypertrophy index. Pathological changes in the kidney were manifested by significant reductions in renal vacuole degeneration, inflammatory cell infiltration, and renal interstitial fibrosis after UC-MSC treatment. We observed that the number of UC-MSCs recruited to the injured kidneys was increased compared with the controls. UC-MSCs apparently reduced the levels of pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and pro-fibrotic factor (TGF-ß) in the kidney and blood of DN rats. In vitro experiments showed that UC-MSC conditioned medium and UC-MSC-derived exosomes decreased the production of these cytokines in high glucose-injured renal tubular epithelial cells, and renal glomerular endothelial cells. Moreover, UC-MSCs secreted large amounts of growth factors including epidermal growth factor, fibroblast growth factor, hepatocyte growth factor, and vascular endothelial growth factor. CONCLUSION: UC-MSCs can effectively improve the renal function, inhibit inflammation and fibrosis, and prevent its progression in a model of diabetes-induced chronic renal injury, indicating that UC-MSCs could be a promising treatment strategy for DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fibrose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Preparações Farmacêuticas , Cordão Umbilical , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Células Endoteliais , Humanos , Inflamação , Ratos , Fator A de Crescimento do Endotélio Vascular
14.
J Orthop Translat ; 23: 29-37, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32477867

RESUMO

BACKGROUND/OBJECTIVES: Accelerating the process of bone regeneration is of great interest for surgeons and basic scientists alike. Recently, umbilical cord mesenchymal stem cells (UCMSCs) are considered clinically applicable for tissue regeneration due to their noninvasive harvesting and better viability. Nonetheless, the bone regenerative ability of human UCMSCs (HUCMSCs) is largely unknown. This study aimed to investigate whether Wnt10b-overexpressing HUCMSCs have enhanced bone regeneration ability in a rat model. METHOD: A rat calvarial defect was performed on 8-week old male Sprague Dawley rats. Commercially purchased HUCMSCsEmp in hydrogel, HUCMSCsWnt10b in hydrogel and HUCMSCsWnt10b with IWR-1 were placed in the calvarial bone defect right after surgery on rats (N = 8 rats for each group). Calvaria were harvested for micro-CT analysis and histology four weeks after surgery. CFU-F and multi-differentiation assay by oil red staining, alizarin red staining and RT-PCR (real-time polymerase chain reaction) were performed on HUCMSCsEmp and HUCMSCsWnt10b in vitro. Conditioned media from HUCMSCsEmp and HUCMSCsWnt10b were collected and used to treat human umbilical cord vein endothelial cells in Matrigel to access vessel formation capacity by tube formation assay. RESULTS: Alizarin red staining, oil red staining and RT-PCR results showed robust osteogenic differentiation but poor adipogenic differentiation ability of HUCMSCsWnt10b. Furthermore, HUCMSCsWnt10b could accelerate bone defect healing, which was likely due to enhanced angiogenesis after the HUCMSCsWnt10b treatment, because more CD31+ vessels and increased vascular endothelial growth factor-A (VEGF-A) expression were observed, compared with the HUCMSCsEmp treatment. Conditioned media from HUCMSCsWnt10b also induced endothelial cells to form vessel tubes in a tube formation assay, which could be abolished by SU5416, an angiogenesis inhibitor. CONCLUSION: To our knowledge, this is the first study providing empirical evidence that HUCMSCsWnt10b can enhance their ability to heal calvarial bone defects via VEGF-mediated angiogenesis. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: HUCMSCsWnt10b can accelerate critical size calvaria and are a new promising therapeutic cell source for fracture nonunion healing.

15.
J Diabetes Res ; 2020: 8035853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32405507

RESUMO

Mesenchymal stem cells (MSCs) are shown to alleviate renal injury of diabetic nephropathy (DN) in rats. However, the underlying mechanism of this beneficial effect is not fully understood. The aims of this study are to evaluate effects of umbilical cord-derived mesenchymal stem cells (UC-MSCs) on renal cell apoptosis in streptozotocin- (STZ-) induced diabetic rats and explore the underlying mechanisms. Characteristics of UC-MSCs were identified by flow cytometry and differentiation capability. Six weeks after DN induction by STZ injection in Sprague-Dawley rats, the DN rats received UC-MSCs once a week for consecutive two weeks. DN-related physical and biochemical parameters were measured at 2 weeks after UC-MSC infusion. Renal histological changes were also assessed. Moreover, the apoptosis of renal cells and expression of apoptosis-related proteins were evaluated. Compared with DN rats, rats treated with UC-MSCs showed suppressed increase in 24-hour urinary total protein, urinary albumin to creatinine ratio, serum creatinine, and blood urea nitrogen. UC-MSC treatment ameliorated pathological abnormalities in the kidney of DN rats as evidenced by H&E, PAS, and Masson Trichrome staining. Furthermore, UC-MSC treatment reduced apoptosis of renal cells in DN rats. UC-MSCs promoted expression of antiapoptosis protein Bcl-xl and suppressed expression of high mobility group protein B1 (HMGB1) in the kidney of DN rats. Most importantly, UC-MSCs suppressed upregulation of thioredoxin-interacting protein (TXNIP), downregulation of thioredoxin 1 (TRX1), and activation of apoptosis signal-regulating kinase 1 (ASK1) and P38 MAPK in the kidney of DN rats. Our results suggest that UC-MSCs could alleviate nephrocyte injury and albuminuria of DN rats through their antiapoptotic property. The protective effects of UC-MSCs may be mediated by inhibiting TXNIP upregulation in part.


Assuntos
Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/terapia , Rim/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteinúria/terapia , Animais , Apoptose/fisiologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Rim/metabolismo , Masculino , Fosforilação , Proteinúria/metabolismo , Proteinúria/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Cordão Umbilical/citologia
16.
J Orthop Translat ; 23: 21-28, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32455113

RESUMO

BACKGROUND/OBJECTIVES: Articular cartilage erosion probably plays a substantial role in osteoarthritis (OA) initiation and development. Studies demonstrated that umbilical cord-derived mesenchymal stem cells (UCMSCs) could delay chondrocytes apoptosis and ameliorate OA progression in patients, but the detailed mechanisms are largely uncharacterised. In this study, we aimed to study the effects of UCMSCs on monosodium iodoacetate (MIA)-induced rat OA model, and explore the cellular mechanism of this effect. METHODS: Intra-articular injection of 0.3 â€‹mg MIA in 50 â€‹µL saline was performed on the left knee of the 200 â€‹g weight male Sprague-Dawley rat to induce rat knee OA. A single dose of 2.5 â€‹× â€‹105 undifferentiated UCMSCs one day after MIA or three-time intra-articular injection of 2.5 â€‹× â€‹105 UCMSCs on Days 1, 7 â€‹and 14 were given, respectively. Four weeks after MIA, joints were harvested and processed for paraffin sections. Safranine-O staining, haematoxylin and eosin staining â€‹and immunohistochemistry of MMP-13, ADAMTS-5, Col-2, CD68 â€‹and CD4 were performed to observe cartilage erosion and synovium. For in vitro â€‹studies, migration ability of cartilage superficial layer cells (SFCs) by UCMSCs were accessed by transwell assay. Furthermore, catabolism change of MIA-induced SFCs by UCMSCs was performed by real-rime polymerase chain reaction of Col-X and BCL-2 genes. CCK-8 assay was performed to check proliferation ability of SFCs by UCMSCs-conditioned media. RESULT: In this study, we locally injected human UCMSCs, which is highly proliferative and noninvasively collectible, into MIA-induced rat knee OA. An important finding is on obviously ameliorated cartilage erosion and decreased OA Mankin score by repeated UCMSCs injection after MIA injection compared with single injection, both of which attenuated OA progression compared with vehicle. Interestingly, we observed significantly increased number of SFCs on the articular cartilage surface, probably related to elevated proliferation, mobilisation and inhibited catabolism marker: Col-X and BCL-2 gene expression of cultured SFCs by UCMSCs-conditioned media treatment in vitro. In addition to the change of unique SFCs, catabolism markers of ADAMTS-5 and MMP-13 were substantially upregulated in the whole cartilage layer chondrocytes as well. Strikingly, MIA-induced inflammatory cells infiltration, on both CD4+ Th cells and CD68+ macrophages, and hyperplasia of the synovium, which was alleviated by repeated UCMSCs injection. CONCLUSION: Our study demonstrated a critical role of repeated UCMSCs dosing on preserving SFCs function, cartilage structure and inhibiting synovitis during OA progression, and thus provided mechanistic proof of evidence for the use of UCMSCs on OA patients in the future. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: UCMSCs are a relatively "young" stem cell, and noninvasively collectible. In our study, we clearly demonstrated that it could effectively delay OA progression, possibly through reserving SFCs function and inhibiting synovitis. Therefore, it could be a new promising therapeutic cell source for OA after further clinical trials.

17.
Retrovirology ; 16(1): 20, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337409

RESUMO

Following publication of their article [1], the authors realized that they inadvertently omitted the contribution of Dr. Li Wu (Ohio State University) who commented on the manuscript at the early stage of the manuscript preparation and provided one plasmid related to this work.

18.
Brain Behav Immun ; 81: 292-304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228609

RESUMO

As a major producer of the inflammatory cytokine interleukin-1 (IL-1), peripheral macrophages can augment IL-1 expression via type 1 IL-1 receptor (IL-1R1) mediated autocrine self-amplification. In the CNS, microglial cells are the major producers of inflammatory cytokines, but express negligible levels of IL-1R1. In the present study, we showed CNS IL-1 induced microglial proinflammatory cytokine expression was mediated by endothelial, not microglial, IL-1R1. This paracrine mechanism was further dissected in vitro. IL-1 was unable to stimulate inflammatory cytokine expression directly from the microglial cell line BV-2, but it stimulated the brain endothelial cell line bEnd.3 to produce a factor(s) in the culture supernatant, which was capable of inducing inflammatory cytokine expression in BV-2. We termed this factor IL-1-induced microglial activation factors (IMAF). BV-2 cytokine expression was inducible by extracellular ATP, but IL-1 did not stimulate the release of ATP from bEnd.3 cells. Filtration of IMAF by size-exclusion membranes showed IMAF activity resided in molecules larger than 50 kd and incubation of IMAF at 95 °C for 5 min did not alter its activity. Microglial inhibitor minocycline was unable to block IMAF activity, even though it blocked LPS induced cytokine expression in BV-2 cells. Adding NF-κB inhibitor to the bEnd.3 cells abolished IL-1 induced cytokine expression in this bi-cellular system, but adding NF-κB inhibitor after IMAF is already produced failed to abrogate IMAF induced cytokine expression in BV-2 cells. RNA sequencing of IL-1 stimulated endothelial cells revealed increased expression of genes involved in the production and processing of hyaluronic acid (HA), suggesting HA as a candidate of IMAF. Inhibition of hyaluronidase by ascorbyl palmitate (AP) abolished IMAF-induced cytokine expression in BV-2 cells. AP administration in vivo also inhibited ICV IL-1-induced IL-1 expression in the hippocampus and hypothalamus. In vitro, either TLR2 or TLR4 inhibitors blocked IMAF induced BV-2 cytokine expression. In vivo, however, IL-1 induced cytokine expression persisted in either TLR2 or TLR4 knockouts. These results demonstrate IL-1 induced inflammatory cytokine expression in the CNS requires a bi-cellular system and HA could be a candidate for IMAF.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Animais , Linhagem Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Citocinas/imunologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Ácido Hialurônico/metabolismo , Proteínas I-kappa B/metabolismo , Interleucina-1/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
Retrovirology ; 16(1): 15, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186067

RESUMO

BACKGROUND: The chemokine receptor CCR5, which belongs to the superfamily of G protein-coupled receptors, is the major co-receptor for HIV-1 entry. Individuals with a homozygous CCR5Δ32 mutation have a long lasting and increased resistance to HIV-1 infection. Therefore, CCR5 represents an optimal target for HIV-1/AIDS gene therapy. The CRISPR/Cas9 system has been developed as one of the most efficacious gene editing tools in mammalian cells and the small-sized version from Staphylococcus aureus (SaCas9) has an advantage of easier delivery compared to the most commonly used version from Streptococcus pyogenes Cas9 (SpCas9). RESULTS: Here, we demonstrated that CCR5 could be specifically and efficiently edited by CRISPR/SaCas9 together with two sgRNAs, which were identified through a screening of 13 sgRNAs. Disruption of CCR5 expression by lentiviral vector-mediated CRISPR/SaCas9 led to increased resistance against HIV-1 infection in human primary CD4+ T cells. Moreover, humanized mice engrafted with CCR5-disrupted CD4+ T cells showed selective survival and enrichment when challenged with CCR5 (R5)-tropic HIV-1 in comparison to mock-treated CD4+ T cells. We also observed CCR5 could be targeted by CRISPR/SaCas9 in human CD34+ hematopoietic stem/progenitor cells without obvious differentiation deficiencies. CONCLUSIONS: This work provides an alternative approach to disrupt human CCR5 by CRISPR/SaCas9 for a potential gene therapy strategy against HIV-1/AIDS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco Hematopoéticas/citologia , Receptores CCR5/genética , Animais , Proteína 9 Associada à CRISPR , Células Cultivadas , Infecções por HIV/virologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , RNA Guia de Cinetoplastídeos , Staphylococcus aureus/enzimologia
20.
J Cell Biochem ; 119(4): 3030-3043, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29058807

RESUMO

ABIN1, an important immune regulator, has been shown to be involved in various cellular functions, such as immunity, development, tissue homeostasis, and tumor progression. It inhibits TNF- and TLR-induced NF-κB signaling activation and the consequent gene expression. Despite its functional significance, the mechanism of ABIN1 in the regulation of various cellular functions remains unclear. In this study, we identified HDAC1, a key regulator of eukaryotic gene expression and many important cellular events, including cell proliferation, differentiation, cancer and immunity, as an interacting partner of ABIN1. The results showed that ABIN1 acted as a modulator to down-regulate HDAC1 ubiquitination via three different linkages, thereby stabilizing HDAC1 by inhibiting its lysosomal and proteasomal degradation. Interestingly, the inhibitory function of ABIN1 required direct binding with HDAC1. Moreover, the level of p53, which was a tumor suppressor and a well-studied substrate of HDAC1, was under the regulation of ABIN1 via the modulation of HDAC1 levels, suggesting that ABIN1 was physiologically significant in tumor progression. This study has revealed a new function of ABIN1 in mediating HDAC1 modification and stability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilase 1/metabolismo , Muramidase/metabolismo , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Células HeLa , Células Hep G2 , Histona Desacetilase 1/química , Humanos , Células K562 , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Estabilidade Proteica , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA