Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645259

RESUMO

The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.

2.
Nat Plants ; 10(4): 551-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509222

RESUMO

Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.

3.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38486346

RESUMO

Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.


Assuntos
Eichhornia , Eichhornia/genética , Genômica , Resistência à Doença , Europa (Continente) , Exercício Físico
4.
Plant Commun ; 5(3): 100778, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38062703

RESUMO

Pigmented rice stands out for its nutritional value and is gaining more and more attention. Wild rice, domesticated red rice, and weedy rice all have a red pericarp and a comprehensive genetic background in terms of the red-pericarp phenotype. We performed population genetic analyses using 5104 worldwide rice accessions, including 2794 accessions with red or black pericarps, 85 of which were newly sequenced in this study. The results suggested an evolutionary trajectory of red landraces originating from wild rice, and the split times of cultivated red and white rice populations were estimated to be within the past 3500 years. Cultivated red rice was found to feralize to weedy rice, and weedy rice could be further re-domesticated to cultivated red rice. A genome-wide association study based on the 2794 accessions with pigmented pericarps revealed several new candidate genes associated with the red-pericarp trait for further functional characterization. Our results provide genomic evidence for the origin of pigmented rice and a valuable genomic resource for genetic investigation and breeding of pigmented rice.


Assuntos
Genes de Plantas , Oryza , Variação Genética , Oryza/genética , Estudo de Associação Genômica Ampla , Metagenômica , Evolução Molecular , Análise de Sequência de DNA , Genômica
5.
Exp Clin Transplant ; 21(11): 917-920, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140935

RESUMO

After renal transplant, immunosuppression therapy is used to reduce the risk of rejection. Here, we describe the case of an adult living related donor renal transplant recipient with rare natural chimerism, as discovered by short tandem repeat sequence analysis. In our process of matching transplant patients, we perform human leukocyte antigen testing and short tandem repeat chimerism testing to decide postoperative immunosuppression strategy for transplant patients. We analyzed the short tandem repeat chimerism status before renal transplant and determined that this patient represented a rare case of natural chimerism. Assessment of organ recipient chimerism can inform physicians regarding a dosage reduction of immunosuppressive agents. Short tandem repeat sequence analysis provides substantial information regarding existing polymorphisms and can identify chimerism, if present, and thereby guide immunosuppression strategies after renal transplant, which may improve the long-term immunosuppression-free survival of renal transplant recipients.


Assuntos
Transplante de Rim , Adulto , Humanos , Transplante de Rim/efeitos adversos , Quimerismo , Transplante Homólogo , Imunossupressores/efeitos adversos , Repetições de Microssatélites , Quimeras de Transplante
6.
Genome Biol ; 24(1): 179, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537691

RESUMO

BACKGROUND: Asian rice is one of the world's most widely cultivated crops. Large-scale resequencing analyses have been undertaken to explore the domestication and de-domestication genomic history of Asian rice, but the evolution of rice is still under debate. RESULTS: Here, we construct a syntelog-based rice pan-genome by integrating and merging 74 high-accuracy genomes based on long-read sequencing, encompassing all ecotypes and taxa of Oryza sativa and Oryza rufipogon. Analyses of syntelog groups illustrate subspecies divergence in gene presence-and-absence and haplotype composition and identify massive genomic regions putatively introgressed from ancient Geng/japonica to ancient Xian/indica or its wild ancestor, including almost all well-known domestication genes and a 4.5-Mbp centromere-spanning block, supporting a single domestication event in main rice subspecies. Genomic comparisons between weedy and cultivated rice highlight the contribution from wild introgression to the emergence of de-domestication syndromes in weedy rice. CONCLUSIONS: This work highlights the significance of inter-taxa introgression in shaping diversification and divergence in rice evolution and provides an exploratory attempt by utilizing the advantages of pan-genomes in evolutionary studies.


Assuntos
Oryza , Oryza/genética , Domesticação , Genoma de Planta , Genes de Plantas , Genômica , Evolução Molecular
7.
Cell Res ; 33(10): 745-761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452091

RESUMO

Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.


Assuntos
Diploide , População do Leste Asiático , Genoma Humano , Telômero , Humanos , Masculino , Povo Asiático/genética , População do Leste Asiático/etnologia , População do Leste Asiático/genética , Genoma Humano/genética , Genômica , Telômero/genética
8.
Hum Brain Mapp ; 44(9): 3885-3896, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186004

RESUMO

Functional connectivity (FC) network characterizes the functional interactions between brain regions and is considered to root in the underlying structural connectivity (SC) network. If this is the case, individual variations in SC should cause corresponding individual variations in FC. However, divergences exist in the correspondence between direct SC and FC and researchers still cannot capture individual differences in FC via direct SC. As brain regions may interact through multi-hop indirect SC pathways, we conceived that one can capture the individual specific SC-FC relationship via incorporating indirect SC pathways appropriately. In this study, we designed graph propagation network (GPN) that models the information propagation between brain regions based on the SC network. Effects of interactions through multi-hop SC pathways naturally emerge from the multilayer information propagation in GPN. We predicted the individual differences in FC network based on SC network via multilayer GPN and results indicate that multilayer GPN incorporating effects of multi-hop indirect SCs greatly enhances the ability to predict individual FC network. Furthermore, the SC-FC relationship evaluated via the prediction accuracy is negatively correlated with the functional gradient, suggesting that the SC-FC relationship gradually uncouples along the functional hierarchy spanning from unimodal to transmodal cortex. We also revealed important intermediate brain regions along multi-hop SC pathways involving in the individual SC-FC relationship. These results suggest that multilayer GPN can serve as a method to establish individual SC-FC relationship at the macroneuroimaging level.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos
9.
aBIOTECH ; 4(1): 20-30, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37220539

RESUMO

Weeds cause tremendous economic and ecological damage worldwide. The number of genomes established for weed species has sharply increased during the recent decade, with some 26 weed species having been sequenced and de novo genomes assembled. These genomes range from 270 Mb (Barbarea vulgaris) to almost 4.4 Gb (Aegilops tauschii). Importantly, chromosome-level assemblies are now available for 17 of these 26 species, and genomic investigations on weed populations have been conducted in at least 12 species. The resulting genomic data have greatly facilitated studies of weed management and biology, especially origin and evolution. Available weed genomes have indeed revealed valuable weed-derived genetic materials for crop improvement. In this review, we summarize the recent progress made in weed genomics and provide a perspective for further exploitation in this emerging field.

11.
Plant J ; 111(5): 1354-1367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781905

RESUMO

Momilactone A, an important plant labdane-related diterpenoid, functions as a phytoalexin against pathogens and an allelochemical against neighboring plants. The genes involved in the biosynthesis of momilactone A are found in clusters, i.e., momilactone A biosynthetic gene clusters (MABGCs), in the rice and barnyardgrass genomes. In addition, we know little about the origin and evolution of MABGCs. Here, we integrated results from comprehensive phylogeny and comparative genomic analyses of the core genes of MABGC-like clusters and MABGCs in 40 monocot plant genomes, providing convincing evidence for the birth and evolution of MABGCs in grass species. The MABGCs found in the PACMAD clade of the core grass lineage (including Panicoideae and Chloridoideae) originated from a MABGC-like cluster in Triticeae (BOP clade) via lateral gene transfer (LGT) and followed by recruitment of MAS1/2 and CYP76L1 genes. The MABGCs in Oryzoideae originated from PACMAD through another LGT event and lost CYP76L1 afterwards. The Oryza MABGC and another Oryza diterpenoid cluster c2BGC are two distinct clusters, with the latter originating from gene duplication and relocation within Oryzoideae. Further comparison of the expression patterns of the MABGC genes between rice and barnyardgrass in response to pathogen infection and allelopathy provides novel insights into the functional innovation of MABGCs in plants. Our results demonstrate LGT-mediated origination of MABGCs in grass and shed lights into the evolutionary innovation and optimization of plant biosynthetic pathways.


Assuntos
Diterpenos , Echinochloa , Oryza , Diterpenos/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Família Multigênica , Oryza/metabolismo , Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
12.
Plant Commun ; 3(3): 100320, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35576160

RESUMO

Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites that have been identified in multiple grass species and are encoded by the Bx biosynthetic gene cluster (BGC) in maize. Data mining of 41 high-quality grass genomes identified complete Bx clusters (containing genes Bx1-Bx5 and Bx8) in three genera (Zea, Echinochloa, and Dichanthelium) of Panicoideae and partial clusters in Triticeae. The Bx cluster probably originated from gene duplication and chromosomal translocation of native homologs of Bx genes. An ancient Bx cluster that included additional Bx genes (e.g., Bx6) is presumed to have been present in ancestral Panicoideae. The ancient Bx cluster was putatively gained by the Triticeae ancestor via horizontal transfer (HT) from the ancestral Panicoideae and later separated into multiple segments on different chromosomes. Bx6 appears to have been under less constrained selection compared with the Bx cluster during the evolution of Panicoideae, as evidenced by the fact that it was translocated away from the Bx cluster in Zea mays, moved to other chromosomes in Echinochloa, and even lost in Dichanthelium. Further investigations indicate that purifying selection and polyploidization have shaped the evolutionary trajectory of Bx clusters in the grass family. This study provides the first candidate case of HT of a BGC between plants and sheds new light on the evolution of BGCs.


Assuntos
Benzoxazinas , Família Multigênica , Benzoxazinas/metabolismo , Família Multigênica/genética , Plantas/genética , Poaceae/genética , Zea mays/genética
13.
Nat Commun ; 13(1): 689, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115514

RESUMO

As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.


Assuntos
Produtos Agrícolas/genética , Echinochloa/genética , Evolução Molecular , Genoma de Planta/genética , Genômica/métodos , Plantas Daninhas/genética , Adaptação Fisiológica/genética , Produtos Agrícolas/classificação , Domesticação , Echinochloa/classificação , Fluxo Gênico , Genes de Plantas/genética , Especiação Genética , Geografia , Resistência a Herbicidas/genética , Filogenia , Plantas Daninhas/classificação , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
15.
Mol Plant ; 15(3): 552-561, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34971791

RESUMO

Rye (Secale cereale) is an important crop with multiple uses and a valuable genetic resource for wheat breeding. However, due to its complex genome and outcrossing nature, the origin of cultivated rye remains elusive. The geneticist N.I. Vavilov proposed that cultivated rye had been domesticated from weedy rye, rather than directly from wild species like other crops. Unraveling the domestication history of rye will extend our understanding of crop evolution and upend our inherent understanding of agricultural weeds. To this end, in this study we generated the 8.5 Tb of whole-genome resequencing data from 116 worldwide accessions of wild, weedy, and cultivated rye, and demonstrated that cultivated rye was domesticated directly from weedy relatives with a similar but enhanced genomic selection by humans. We found that a repertoire of genes that experienced artificial selection is associated with important agronomic traits, including shattering, grain yield, and disease resistance. Furthermore, we identified a composite introgression in cultivated rye from the wild perennial Secale strictum and detected a 2-Mb introgressed fragment containing a candidate ammonium transporter gene with potential effect on the grain yield and plant growth of rye. Taken together, our findings unravel the domestication history of cultivated rye, suggest that interspecific introgression serves as one of the likely causes of obscure species taxonomy of the genus Secale, and provide an important resource for future rye and wheat breeding.


Assuntos
Domesticação , Secale , Evolução Molecular , Variação Genética , Genoma de Planta/genética , Metagenômica , Melhoramento Vegetal , Secale/genética , Triticum/genética
16.
Mitochondrial DNA B Resour ; 6(11): 3105-3106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621989

RESUMO

The genus Echinochloa (Poaceae) includes orphan crops and important agricultural weeds. Here, we assembled the complete chloroplast genome of a diploid Echinochloa species (E. haploclada). The chloroplast genome is 139,844 bp in length, which includes a large single copy region (81,893 bp), a small single copy region (12,533 bp) and two separated inverted repeat regions (45,418 bp). A total of 119 unique genes were annotated, consisting of 83 protein-coding genes, 32 tRNA genes and 4 rRNA genes. Hexaploid E. crus-galli, one of the most serious weeds worldwide, was derived from a hybrid between tetraploid E. oryzicola and an unknown diploid species. Based on chloroplast genomes of eight Echinochloa species (varieties), the phylogenetic analysis showed that E. crus-galli clustered firstly with diploid E. haploclada rather than tetraploid E. oryzicola, supporting previous assumption that E. oryzicola is the paternal donor of E. crus-galli.

17.
Entropy (Basel) ; 23(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198925

RESUMO

In this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corrupted covariate matrix is observed. Then, by the application of information theory, the minimax rates of convergence for estimation are investigated in terms of the ℓp(1≤p<∞)-losses under the general sparsity assumption on the underlying regression parameter and some regularity conditions on the observed covariate matrix. The established lower and upper bounds on minimax risks agree up to constant factors when p=2, which together provide the information-theoretic limits of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator for the underlying parameter is also proposed and shown to be minimax optimal in the ℓ2-loss.

18.
J Neural Eng ; 18(4)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34181582

RESUMO

Objective. Brain connectivity network supports the information flow underlying human cognitions and should reflect the individual variability in human cognitive behaviors. Various studies have utilized brain connectivity to predict individual differences in human behaviors. However, traditional studies viewed brain connectivity network as a one-dimensional vector, a method which neglects topological properties of brain connectivity network.Approach. To utilize these topological properties, we proposed that graph neural network (GNN) which combines graph theory and neural network can be adopted. Different from previous node-driven GNNs that parameterize on the node feature transformation, we designed an edge-driven GNN named graph propagation network (GPN) that parameterizes on the information propagation within brain connectivity network.Main results.Edge-driven GPN outperforms various baseline models such as node-driven GNN and traditional partial least square regression in predicting the individual total cognition based on the resting-state functional connectome. GPN also reveals a directed network topology encoding the information flow, indicating that higher-order association cortices such as dorsolateral prefrontal, inferior frontal and inferior parietal cortices are responsible for the information integration underlying total cognition.Significance. These results suggest that edge-driven GPN can better explore topological structures of brain connectivity network and can serve as a new method to associate brain connectome and human behaviors.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Cognição , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
19.
Trends Plant Sci ; 26(6): 560-574, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33648850

RESUMO

De-domestication or feralization is an interesting phenomenon in crops and livestock. Previously, evidence for crop de-domestication was based mainly on studies using phenotypic and genotypic data from limited molecular markers or gene segments. Recent genomic studies in rice, barley, and wheat provide comprehensive landscapes of de-domestication on a whole-genome scale. Here, we summarize crop de-domestication processes, ecological roles of de-domesticates, mechanisms underlying crop de-domestication syndromes, and conditions potentially favoring de-domestication events. We further explain how recent de-domestication studies have expanded our understanding of the complexity of crop evolution, and highlight the genetic novelties of de-domesticates beneficial for modern crop breeding.


Assuntos
Domesticação , Hordeum , Produtos Agrícolas/genética , Evolução Molecular , Genômica , Hordeum/genética , Melhoramento Vegetal
20.
Cereb Cortex ; 31(5): 2686-2700, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33386409

RESUMO

Derailment of inhibitory control (IC) underlies numerous psychiatric and behavioral disorders, many of which emerge during adolescence. Identifying reliable predictive biomarkers that place the adolescents at elevated risk for future IC deficits can help guide early interventions, yet the scarcity of longitudinal research has hindered the progress. Here, using a large-scale longitudinal dataset in which the same subjects performed a stop signal task during functional magnetic resonance imaging at ages 14 and 19, we tracked their IC development individually and tried to find the brain features predicting their development by constructing prediction models using 14-year-olds' functional connections within a network or between a pair of networks. The participants had distinct between-subject trajectories in their IC development. Of the candidate connections used for prediction, ventral attention-subcortical network interconnections could predict the individual development of IC and formed a prediction model that generalized to previously unseen individuals. Furthermore, we found that connectivity between these two networks was related to substance abuse problems, an IC-deficit related problematic behavior, within 5 years. Our study reveals individual differences in IC development from mid- to late-adolescence and highlights the importance of ventral attention-subcortical network interconnections in predicting future IC development and substance abuse in adolescents.


Assuntos
Encéfalo/diagnóstico por imagem , Inibição Psicológica , Vias Neurais/diagnóstico por imagem , Adolescente , Desenvolvimento do Adolescente , Variação Biológica da População , Encéfalo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Tempo de Reação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA