Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453888

RESUMO

Colorectal cancer (CRC) is a malignancy that is widely prevalent worldwide. Due to its unsatisfactory treatment outcome and extremely poor prognosis, many studies on the molecular mechanisms and pathological mechanisms of CRC have been published in recent years. The tumor microenvironment (TME) is an extremely important feature of tumorigenesis and one of the hallmarks of tumor development. Metabolic reprogramming is currently a hot topic in tumor research, and studies on this topic have provided important insights into CRC development. In particular, metabolic reprogramming in cancer causes changes in the composition of energy and nutrients in the TME. Furthermore, it can alter the complex crosstalk between immune cells and associated immune factors, such as associated macrophages and T cells, which play important immune roles in the TME, in turn affecting the immune escape of tumors by altering immune surveillance. In this review, we summarize several metabolism-related processes affecting the immune microenvironment of CRC tumors. Our results showed that the immune microenvironment is regulated by metabolic reprogramming and influences the development of CRC.

2.
Biomed Pharmacother ; 170: 116030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128177

RESUMO

Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract with a high mortality rate worldwide, a low early detection rate and a poor prognosis. The rise of metabolomics has facilitated the early detection and treatment of GC. Metabolism in the GC tumor microenvironment (TME) mainly includes glucose metabolism, lipid metabolism and amino acid metabolism, which provide energy and nutrients for GC cell proliferation and migration. Abnormal tumor metabolism can influence tumor progression by regulating the functions of immune cells and immune molecules in the TME, thereby contributing to tumor immune escape. Thus, in this review, we summarize the impact of metabolism on the TME during GC progression. We also propose novel strategies to modulate antitumor immune responses by targeting metabolism.


Assuntos
Neoplasias , Neoplasias Gástricas , Humanos , Reprogramação Metabólica , Metabolismo dos Lipídeos , Metabolômica , Microambiente Tumoral
3.
Am J Cancer Res ; 13(8): 3300-3314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693147

RESUMO

As the major intracellular anion, chloride plays an important role in maintaining intracellular and extracellular ion homeostasis, osmotic pressure, and cell volume. Intracellular chloride channel 1, which has the physiological role of forming membrane proteins in the lipid bilayer and playing ion channels, is a hot research topic in recent years. It has been found that CLIC1 does not only act as an ion channel but also participates in cell cycle regulation, apoptosis, and intracellular oxidation; thus, it participates in the proliferation, invasion, and migration of various tumor cells in various systems throughout the body. At the same time, CLIC1 is highly expressed in tumor cells and is associated with malignancy and a poor prognosis. This paper reviews the pathological mechanisms of CLIC1 in systemic diseases, which is important for the early diagnosis, treatment, and prognosis of systemic diseases associated with CLIC1 expression.

4.
Front Immunol ; 13: 1008047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275647

RESUMO

Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.


Assuntos
Gastrite , Proteína HMGB1 , Humanos , Alarminas , Catelicidinas , Interleucina-33 , Imunidade Adaptativa , Mucosa Gástrica , Defensinas , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA