Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Biomark ; 36(1): 1-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35912730

RESUMO

BACKGROUND: LncRNA STK4 antisense RNA 1 (STK4-AS1) has been identified as a potential biomarker associated with multiple cancers. We proposed that STK4-AS1 plays a role in the proliferation of osteosarcoma by regulating the cell cycle. METHODS: We compared the expression of STK4-AS1, p53, and p21 in osteosarcoma vs normal samples in clinical tissues and cell lines. We determined the effect of overexpression and knockdown of STK4-AS1 in p53 expressing osteosarcoma cells U2OS, p53 muted osteosarcoma cells MG63, and osteoblast cells hFOB on p53 and p21 expression and the cell viability. For U2OS and MG63, the cell cycle was analyzed and the expression of cyclin proteins was determined. We overexpressed p53 or p21 in STK4-AS1 overexpressed cells to explore the association of STK4-AS1 and p53 in U2OS. RESULTS: The STK4-AS1 expression was higher and p53 and p21 expression were lower in osteosarcoma tissue and cells than in their non-cancer counterparts. The expression of STK4-AS1 was negatively correlated with the expression of p53 or p21. Knockdown of STK4-AS1 in U2OS decreased the cell viability, increased cells in the G0/G1 phase, decreased cells in the S and G2/M phase, decreased expression of cyclin A and B, increased p53 and p21, and had no effect on cyclin D and cyclin E, while overexpression of STK4-AS1 did the opposes. Overexpression of p53 or p21 recovered some changes caused by STK4-AS1 overexpression in U2OS. MG63 expressed no p53 and the expression of p21, cyclin A, and cyclin B, cell viability, and cell cycle were not affected by altered STK4-AS1 levels. In hFOB cells, the expression of p53 and p21 was decreased and the cell viability was increased when STK4-AS1 was overexpressed, but they were not affected when STK4-AS1 was knocked down. CONCLUSION: LncRNA STK4-AS1 promoted the cell cycle of osteosarcoma cells by inhibiting p53 expression.


Assuntos
Neoplasias Ósseas , Osteossarcoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Apoptose/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , RNA Antissenso/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Mol Ther Oncolytics ; 25: 189-200, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35592388

RESUMO

Long noncoding RNA (lncRNA) CBR3-AS1 (termed as CBR3-AS1) has been reported to be upregulated in several cancers including osteosarcoma. Its positive impact on the proliferation, migration, and invasion of osteosarcoma cells has been unveiled; nevertheless, whether it also affects the stemness and epithelial-mesenchymal transition (EMT) of osteosarcoma cells is unclear. The purpose for this study was to explore the effects of CBR3-AS1 on the stemness and EMT of osteosarcoma cells as well as its underlying mechanism. qRT-PCR and western blot were applied to detect target gene expression. Function assays were conducted to evaluate the effect of genes on the stemness and EMT of osteosarcoma cells. Mechanism assays were done to verify the association among different genes. In vivo assays were also performed. The obtained data showed that CBR3-AS1 demonstrated a high expression in osteosarcoma cells. CBR3-AS1 could promote stemness and EMT of osteosarcoma cells as well as osteosarcoma tumor growth. Mechanically, CBR3-AS1 sponged miR-140-5p and recruited DDX54 to upregulate NUCKS1, thus activating the mTOR signaling pathway. Furthermore, NUCKS1 could facilitate stemness and EMT of osteosarcoma cells. In summary, this study reveals that CBR3-AS1 exerts an oncogenic role in osteosarcoma through modulating the network of the miR-140-5p/DDX54-NUCKS1-mTOR signaling pathway.

3.
Hereditas ; 159(1): 6, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057861

RESUMO

OBJECTIVE: This study aimed to explore the mRNA and protein expression of SLC3A2 in laryngeal carcinoma cells and tissues, and functional regulatory mechanism of SLC3A2 in cell ferroptosis of laryngeal carcinoma. METHODS: We chose the key gene-SLC3A2 of DEGs from TCGA by bioinformatics analysis, and then we constructed stable knockdown of SLC3A2 in laryngeal carcinoma cells. MTT assay and clonogenic assay were used to determine cell viability and cell growth, respectively. The mRNA and protein expression were determined by RT-qPCR and western blotting, respectively. Xenograft tumor model was used to determine the role of SLC3A2 in tumor growth. RESULTS: The results of limma analysis recovered that 92 genes were involved in both upregulated DEGs and high risk of poor prognosis, whereas 36 genes were involved in both downregulated DEGs and low risk of poor prognosis. Pathway enrichment analysis indicated that mTOR signaling pathway and ferroptosis exerted a role in regulating these intersection genes. Moreover, SLC3A2 is a key gene in ferroptosis in laryngeal carcinoma. SLC3A2 is highly expressed in laryngeal carcinoma tissues and cells. Patients with high SLC3A2 expression exerted poor survival. SLC3A2 deficiency inhibited cell proliferation and foci formation. Furthermore, knockdown of SLC3A2 expression induced the efficacy of ferroptosis and suppressed ferroptosis related proteins expression. Mechanically, SLC3A2 deficiency facilitated ferroptosis through upregulating the expression of mTOR and P70S6K, whereas inhibited p-mTOR and p-P70S6K expression in laryngeal carcinoma cells. SLC3A2 deficiency inhibited tumorigenesis in nude mice. CONCLUSION: Our study suggests that SLC3A2 negatively regulates ferroptosis through mTOR pathway in laryngeal carcinoma.


Assuntos
Carcinoma , Ferroptose , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Neoplasias Laríngeas/patologia , Animais , Proliferação de Células , Humanos , Neoplasias Laríngeas/genética , Camundongos , Camundongos Nus , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA