Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
Molecules ; 29(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274975

RESUMO

The electrocatalytic performance of a Fe65Co10Si12.5B12.5 Fe-based compounds toward alkaline hydrogen evolution reaction (HER) is enhanced by dealloying. The dealloying process produced a large number of nanosheets on the surface of NS-Fe65Co10Si12.5B12.5, which greatly increased the specific surface area of the electrode. When the dealloying time is 3 h, the overpotential of NS-Fe65Co10Si12.5B12.5 is only 175.1 mV at 1.0 M KOH and 10 mA cm-2, while under the same conditions, the overpotential of Fe65Co10Si12.5B12.5 is 215 mV, which is reduced. In addition, dealloying treated electrodes also show better HER performance than un-dealloying treated electrodes. With the increase in Co doping amount, the overpotential of the hydrogen evolution reaction decreases, and the hydrogen evolution activity is the best when the addition amount of Co is 10%. This work not only provides a basic understanding of the relationship between surface activity and the dealloying of HER catalysts, but also paves a new way for doping transition metal elements in Fe-based electrocatalysts working in alkaline media.

2.
Science ; 385(6713): 1077-1080, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236185

RESUMO

There is extensive geologic evidence of ancient volcanic activity on the Moon, but it is unclear how long that volcanism persisted. Magma fountains produce volcanic glasses, which have previously been found in samples of the Moon's surface. We investigated ~3000 glass beads in lunar soil samples collected by the Chang'e-5 mission and identified three as having a volcanic origin on the basis of their textures, chemical compositions, and sulfur isotopes. Uranium-lead dating of the three volcanic glass beads shows that they formed 123 ± 15 million years ago. We measured high abundances of rare earth elements and thorium in these volcanic glass beads, which could indicate that such recent volcanism was related to local enrichment of heat-generating elements in the mantle sources of the magma.

3.
Dalton Trans ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246273

RESUMO

ZnWO4@NiCo2O4 core-shell nanosheet array composites are synthesized on nickel foam via a two-step hydrothermal method. The optimal conditions, including a Ni(NO3)2·6H2O to Co(NO3)2·6H2O molar ratio of 2 : 1, 12 hours reaction time, and 120 °C temperature, yield a specific capacitance of 875 C g-1 at 1 A g-1. The electrode also maintains 81.1% capacitance after 10 000 cycles. The material's performance is attributed to its core-shell structure, which enhances ion diffusion and electron transport. This study presents a viable approach for high-performance supercapacitor electrodes.

4.
Insect Sci ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219288

RESUMO

There is abundant evidence that parasitoids manipulate their hosts by envenomation to support the development and survival of their progeny before oviposition. However, the specific mechanism underlying host nutritional manipulation remains largely unclear. To gain a more comprehensive insight into the effects induced by the gregarious ectoparasitoid Iseropus kuwanae (Hymenoptera: Ichneumonidae) on the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) larvae, we sequenced the transcriptome of both non-envenomed and envenomed G. mellonella larvae, specifically targeting genes related to lipid metabolism. The present study revealed that 202 differentially expressed genes (DEGs) were identified and 9 DEGs were involved in lipid metabolism. The expression levels of these 9 DEGs relied on envenomation and the duration post-envenomation. Further, envenomation by I. kuwanae induced an increase in triglyceride (TG) level in the hemolymph of G. mellonella larvae. Furthermore, silencing GmPLA2 in G. mellonella larvae 24 h post-envenomation significantly decreased the content of 4 unsaturated fatty acids and TG levels in the hemolymph. The content of linoleic acid and α-linoleic acid were significantly decreased and the content of oleic acid was significantly increased by exogenous supplement of arachidonic acid. Meanwhile, the reduction in host lipid levels impairs the growth and development of wasp offspring. The present study provides valuable knowledge about the molecular mechanism of the nutritional interaction between parasitoids and their hosts and sheds light on the coevolution between parasitoids and host insects.

6.
Chem Sci ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39246332

RESUMO

The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.

7.
Small ; : e2401762, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279395

RESUMO

Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.

8.
Curr Med Chem ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39229985

RESUMO

BACKGROUND: Parkinson's disease (PD) is an irreversible, progressive disorder that profoundly impacts both motor and non-motor functions, thereby significantly diminishing the individual's quality of life. Dihydrosinularin (DHS), a natural bioactive molecule derived from soft corals, exhibits low cytotoxicity and anti-inflammatory properties. However, the therapeutic effects of DHS on neurotoxins and PD are currently unknown. OBJECTIVE: This study investigated whether DHS could mitigate 6-hydroxydopamine (6- OHDA)-induced neurotoxicity and explored the role of neuroprotective PI3K downstream signaling pathways, including that of AKT, ERK, JNK, BCL2, and NFκB, in DHS- mediated neuroprotection. METHOD: We treated the human neuroblastoma cell line, SH-SY5Y, with the neurotoxin 6-OHDA to establish a cellular model of PD. Meanwhile, we assessed the anti-apoptotic and neuroprotective properties of DHS through cell viability, apoptosis, and immunostaining assays. Furthermore, we utilized the PI3K inhibitor LY294002 to validate the therapeutic target of DHS. RESULTS: Based on the physicochemical properties of DHS, it can be inferred that it has promising oral bioavailability and permeability across the blood-brain barrier (BBB). It was demonstrated that DHS upregulates phosphorylated AKT and ERK while downregulating phosphorylated JNK. Consequently, this enhances the expression of BCL2, which exerts a protective effect on neuronal cells by inhibiting caspase activity and preventing cell apoptosis. The inhibition of PI3K significantly reduced the relative protective activity of DHS in 6-OHDA-induced neurotoxicity, suggesting that the neuroprotective effects of DHS are mediated through the activation of PI3K signaling. CONCLUSION: By investigating the mechanisms involved in 6-OHDA-induced neurotoxicity, we provided evidence concerning the therapeutic potential of DHS in neuroprotection. Further research into DHS and its mechanisms of action holds promise for developing novel therapeutic strategies for PD.

9.
ACS Appl Mater Interfaces ; 16(36): 47257-47269, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39216005

RESUMO

The development of new microbicidal compounds has become a top priority due to the emergence and spread of drug-resistant pathogenic microbes. In this study, blue-emitting and positively charged carbon dots (CDs), called Du-CDs, were fabricated for the first time utilizing the natural product extract of endophyte Diaporthe unshiuensis YSP3 as raw material through a one-step solvothermal method, which possessed varied functional groups including amino, carboxyl, hydroxyl, and sulfite groups. Interestingly, Du-CDs exhibited notably enhanced antimicrobial activities toward both bacteria and fungi as compared to the natural product extract of YSP3, with low minimum inhibitory concentrations. Moreover, Du-CDs significantly inhibited the formation of biofilms. Du-CDs bound with the microbial cell surface via electronic interaction or hydrophobic interaction entered the microbial cells and were distributed fully inside the cells. Du-CDs caused cell membrane damage and/or cell division cycle interruption, resulting in microbial cell death. Moreover, Du-CDs exhibited an improved antimicrobial effect and accelerated wound healing ability with good biocompatibility in the mouse model. Overall, we demonstrate that the formation of CDs from fungal natural products presents a promising and potential means to develop novel antimicrobial agents with great fluorescence, improved microbiocidal effect and wound healing capacity, and good biosafety for combating microbial infections.


Assuntos
Produtos Biológicos , Carbono , Testes de Sensibilidade Microbiana , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Carbono/química , Carbono/farmacologia , Camundongos , Pontos Quânticos/química , Ascomicetos/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cicatrização/efeitos dos fármacos
10.
Bioact Mater ; 36: 595-612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39206220

RESUMO

Bacterial infection of cutaneous wounds can easily lead to occurrence of chronic wounds and even more serious diseases. Therefore, multifunctional, biodegradable, and reusable wound dressings that can quickly manage wound infection and promote wound healing are urgently desired. Herein, inspired by the "capturing and killing" action of Drosera peltata Thunb., a biomimetic cellulose film was constructed to capture the bacteria (via the rough structure of the film) and kill them (via the combination of photodynamic therapy and chemotherapy) to promote wound tissue remodeling. The film (termed OBC-PR) was simply prepared by chemically crosslinking the oxidized bacterial cellulose (OBC) with polyhexamethylene guanidine hydrochloride (PHGH) and rose bengal (RB). Notably, it could effectively capture Escherichia coli and Staphylococcus aureus bacterial cells with capture efficiencies of ∼99 % and ∼96 %, respectively, within 10 min. Furthermore, the in vivo experiments showed that OBC-PR could effectively promote the macrophage polarization toward the M2 phenotype and adequately induce the reconstruction of blood vessels and nerves, thus promoting wound healing. This study provides a potential direction for designing multifunctional wound dressings for managing infected skin wounds in the future.

11.
Cardiovasc Diagn Ther ; 14(3): 377-387, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975010

RESUMO

Background: Numerous studies have validated a 5-year warranty period for heart health in Western populations with a coronary artery calcium (CAC) score of zero. While the calcium score is a crucial cardiovascular risk indicator, its interpretation in Asian populations remains unclear. This meta-analysis aimed to clarify the uncertainty surrounding the prevalence, warranty period, and prognostic implications of zero CAC scores in Asian populations. It also examined the impact of sex on subclinical CAC progression. While the calcium score is a crucial cardiovascular risk indicator, its interpretation in Asian populations remains unclear. The study aimed to shed light on these issues by exploring the specificities of subclinical CAC progression in the Asian context. Methods: Our systematic literature search, from the study's inception to October 2023, targeted studies on subclinical CAC progression in the Asian population with a zero CAC score. We searched the Cochrane Library, and PubMed. The search terms included "zero score", "coronary calcification", "zero CAC score", and "CAC scan". Results: We evaluated seven published studies through a meta-analysis and assessed the risk of bias using the Newcastle-Ottawa Scale (NOS). In this meta-analysis of three observational studies addressing zero CAC prevalence (n=7,661), the pooled prevalence of zero CAC scores in the Asian population was 18.2% [95% confidence interval (CI): 12.5-25.9%]. A significant difference in follow-up warranty period was observed between the CAC zero group and subclinical CAC progression group (mean difference, 1.26 years; 95% CI: 0.94-1.58; P<0.001). Furthermore, the conversion rate of subclinical CAC progression differed significantly between males and females (risk ratio, 2.37; 95% CI: 1.98-2.84; P<0.001). Analysis of four studies revealed a notable discrepancy in the major adverse cardiovascular event (MACE) rate between the CAC (-) and CAC (+) groups (risk ratio, 4.78; 95% CI: 2.21-10.36; P<0.001). Conclusions: The meta-analysis of zero CAC scores in Asian populations suggested an 18.2% prevalence. A 5-year warranty period was noted, with heightened subclinical CAC progression likelihood after this duration. Additionally, sex-based differences were observed in subclinical CAC progression rates. These findings will provide clinical cardiovascular risk stratification for guiding gender-specific clinical decision-making in asymptomatic in Asian individuals.

12.
Nat Commun ; 15(1): 6050, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025886

RESUMO

The redox state of arc mantle has been considered to be more oxidized and diverse than that of the mid-ocean ridge, but the cause of the variation is debated. We examine the redox state of the Cenozoic global arc mantle by compiling measured/calculated fO2 of olivine-hosted melt inclusions from arc magma and modeled fO2 based on V/Sc and Cu/Zr ratios of arc basaltic rocks. The results indicate that the redox state of Cenozoic arc mantle is latitude dependent, with less oxidized arc mantle in the low latitudes, contrasting with a near constant across-latitude trend in the mid-ocean ridges. We propose that such a latitude-dependent pattern in the arc mantle may be controlled by the variation in the redox state of subducted sediment, possibly related to a latitudinal variation in the primary production of phytoplankton, which results in more organic carbon and sulfide deposited on the low-latitude ocean floor. Our findings provide evidence for the impact of the surface environment on Earth's upper mantle.

13.
Cartilage ; : 19476035241264012, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057748

RESUMO

OBJECTIVE: Mounting evidence suggests that histone deacetylases (HDAC) inhibitors reduce cartilage destruction in animal models of osteoarthritis (OA). Tumor necrosis factor (TNF)-α-blocking treatment for OA may provide effective joint protection by slowing joint damage. To investigate the effects of intraperitoneal administration of etanercept (a TNF-α inhibitor) on OA development in rats and changes in the nociceptive behavior of rats and expression of HDACs, RUNX2, and MMP13 in cartilage. METHODS: Induction of OA in Wistar rats was accomplished through anterior cruciate ligament transection (ACLT). One or five milligrams (mg) of etanercept was administered intraperitoneally for 5 consecutive weeks after ACLT to the ACLT + etanercept (1 and 5 mg/kg) groups. Nociceptive behavior and changes in knee joint width were analyzed. Cartilage was evaluated histologically and immunohistochemically. RESULTS: ACLT + etanercept significantly improved mechanical allodynia and weight-bearing distribution compared to ACLT alone. In OA rats treated with etanercept, cartilage degeneration and synovitis were significantly less pronounced than those in ACLT rats. OA-affected cartilage also showed reduced expression of HDAC 6, 7, RUNX-2, and MMP-13 in response to etanercept but increased expression of HDAC4. CONCLUSION: Our study demonstrated that etanercept therapy (1) attenuated the development of OA and synovitis in rats, (2) reduced nociception, and (3) regulated chondrocyte metabolism, possibly by inhibiting cell HDAC6 and HDAC7, RUNX2, and MMP13 and increasing HDAC4 expression. Based on new evidence, etanercept may have therapeutic potential in OA.

14.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119799, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39043304

RESUMO

BACKGROUND AND PURPOSE: Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM. EXPERIMENTAL APPROACH: MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways. KEY RESULTS: GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures. CONCLUSION AND IMPLICATIONS: This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.


Assuntos
Inibidores da Angiogênese , Glioma , Células Endoteliais da Veia Umbilical Humana , Neovascularização Patológica , Peixe-Zebra , Humanos , Animais , Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Glioma/patologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Propionatos/farmacologia
15.
ACS Appl Mater Interfaces ; 16(31): 41211-41222, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39054697

RESUMO

Organic synaptic transistors are a promising technology for advanced electronic devices with simultaneous computing and memory functions and for the application of artificial neural networks. In this study, the neuromorphic electrical characteristics of organic synaptic electrolyte-gated transistors are correlated with the microstructural and interfacial properties of the active layers. This is accomplished by utilizing a semiconducting/insulating polyblend-based pseudobilayer with embedded source and drain electrodes, referred to as PB-ESD architecture. Three variations of poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) PB-ESD-based organic synaptic transistors are fabricated, each exhibiting distinct microstructures and electrical characteristics, thus serving excellent samples for exploring the critical factors influencing neuro-electrical properties. Poor microstructures of P3HT within the active layer and a flat active layer/ion-gel interface correspond to typical neuromorphic behaviors such as potentiated excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and short-term potentiation (STP). Conversely, superior microstructures of P3HT and a rough active layer/ion-gel interface correspond to significantly higher channel conductance and enhanced EPSC and PPF characteristics as well as long-term potentiation behavior. Such devices were further applied to the simulation of neural networks, which produced a good recognition accuracy. However, excessive PMMA penetration into the P3HT conducting channel leads to features of a depressed EPSC and paired-pulse depression, which are uncommon in organic synaptic transistors. The inclusion of a second gate electrode enables the as-prepared organic synaptic transistors to function as two-input synaptic logic gates, performing various logical operations and effectively mimicking neural modulation functions. Microstructure and interface engineering is an effective method to modulate the neuromorphic behavior of organic synaptic transistors and advance the development of bionic artificial neural networks.

16.
Phytomedicine ; 132: 155855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043083

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a frequently occurring type of head and neck cancer with a high mortality and morbidity rate. Rhopaloic acid A (RA), a terpenoid derived from sponges, has demonstrated a promising anti-tumor activity, but its effectiveness for treating OSCC remains unknown. PURPOSE: The aim of this study was to investigate whether RA inhibits the growth of OSCC. METHODS: Cell viability was evaluated using CCK-8 assays in OSCC cells (Ca9-22, HSC-3 and SAS) and in normal cells (HGF-1) treated with RA. DAPI staining, AO staining, JC-1 staining and immunofluorescence were used to determine apoptosis, mitochondrial membrane potential and autophagy in RA-treated OSCC cells. Protein expression levels were determined by western blotting. Furthermore, the anti-tumor effect of RA was confirmed in vivo using a zebrafish oral cancer xenotransplantation model. RESULTS: OSCC cells had a significantly reduced viability after RA treatment, but normal cells were not affected. Treatment with RA caused chromatin condensation in OSCC cells, which increased their expression of autophagy- and apoptosis-related proteins. Furthermore, RA caused mitochondrial damage and increased autophagosome formation. Mitophagy was also induced by RA through the JNK/BNIP3/Nix/LC3B pathway. The JNK inhibitor SP600125 prevented both RA-mediated cell death and mitophagy of OSCC cells. A zebrafish xenograft model demonstrated that RA inhibits OSCC growth. CONCLUSION: In conclusion, RA showed a potent anticancer activity in in vitro and in in vivo oral cancer models by promoting mitochondrial damage-induced apoptosis and mitophagy, which suggests that RA may be useful as a novel and effective treatment for OSCC.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Mitocôndrias , Mitofagia , Neoplasias Bucais , Peixe-Zebra , Animais , Neoplasias Bucais/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Proteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
17.
Oncol Lett ; 28(2): 378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939621

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain cancer that occurs more frequently than other brain tumors. The present study aimed to reveal a novel mechanism of temozolomide resistance in GBM using bioinformatics and wet lab analyses, including meta-Z analysis, Kaplan-Meier survival analysis, protein-protein interaction (PPI) network establishment, cluster analysis of co-expressed gene networks, and hierarchical clustering of upregulated and downregulated genes. Next-generation sequencing and quantitative PCR analyses revealed downregulated [tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 (TIE1), calcium voltage-gated channel auxiliary subunit α2Δ1 (CACNA2D1), calpain 6 (CAPN6) and a disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6)] and upregulated [serum amyloid (SA)A1, SAA2, growth differentiation factor 15 (GDF15) and ubiquitin specific peptidase 26 (USP26)] genes. Different statistical models were developed for these genes using the Z-score for P-value conversion, and Kaplan-Meier plots were constructed using several patient cohorts with brain tumors. The highest number of nodes was observed in the PPI network was for ADAMTS6 and TIE1. The PPI network model for all genes contained 35 nodes and 241 edges. Immunohistochemical staining was performed using isocitrate dehydrogenase (IDH)-wild-type or IDH-mutant GBM samples from patients and a significant upregulation of TIE1 (P<0.001) and CAPN6 (P<0.05) protein expression was demonstrated in IDH-mutant GBM in comparison with IDH-wild-type GBM. Structural analysis revealed an IDH-mutant model demonstrating the mutant residues (R132, R140 and R172). The findings of the present study will help the future development of novel biomarkers and therapeutics for brain tumors.

18.
Nat Commun ; 15(1): 5147, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886343

RESUMO

Bacteria-mediated cancer therapeutic strategies have attracted increasing interest due to their intrinsic tumor tropism. However, bacteria-based drugs face several challenges including the large size of bacteria and dense extracellular matrix, limiting their intratumoral delivery efficiency. In this study, we find that hyperbaric oxygen (HBO), a noninvasive therapeutic method, can effectively deplete the dense extracellular matrix and thus enhance the bacterial accumulation within tumors. Inspired by this finding, we modify Escherichia coli Nissle 1917 (EcN) with cypate molecules to yield EcN-cypate for photothermal therapy, which can subsequently induce immunogenic cell death (ICD). Importantly, HBO treatment significantly increases the intratumoral accumulation of EcN-cypate and facilitates the intratumoral infiltration of immune cells to realize desirable tumor eradication through photothermal therapy and ICD-induced immunotherapy. Our work provides a facile and noninvasive strategy to enhance the intratumoral delivery efficiency of natural/engineered bacteria, and may promote the clinical translation of bacteria-mediated synergistic cancer therapy.


Assuntos
Escherichia coli , Oxigenoterapia Hiperbárica , Imunoterapia , Terapia Fototérmica , Oxigenoterapia Hiperbárica/métodos , Animais , Imunoterapia/métodos , Camundongos , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Feminino , Camundongos Endogâmicos BALB C , Matriz Extracelular/metabolismo
19.
Anal Bioanal Chem ; 416(17): 3945-3962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886239

RESUMO

Carbon dots (CDs) are quasi-spherical carbon nanoparticles with excellent photoluminescence, good biocompatibility, favorable photostability, and easily modifiable surfaces. CDs, serving as fluorescent probes, have emerged as an ideal tool for cellular differentiation owing to their outstanding luminescence performance and tunable surface properties. In this review, we summarize the recent research progress with CDs in the differentiation of cancer/normal cells, Gram-positive/Gram-negative bacteria, and live/dead cells, as well as the cellular differences used for differentiation. Additionally, we summarize the preparation methods, raw materials, and properties of the CDs used for cell discrimination. The differentiation mechanisms and the advantages or limitations of the differentiation methods are also introduced. Finally, we propose several research challenges in this field and future research directions that require extensive investigation. It is hoped that this review will help researchers in the design of new CDs as ideal fluorescent probes for realizing diverse cell differentiation applications.


Assuntos
Carbono , Corantes Fluorescentes , Pontos Quânticos , Carbono/química , Humanos , Corantes Fluorescentes/química , Pontos Quânticos/química , Diferenciação Celular , Animais
20.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1141-1149, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884249

RESUMO

Mining causes severe damage to soil ecosystems. Vegetation restoration in abandoned mine areas is an inevitable requirement for sustainable development. Soil microbes, as the most active component of soil organic matter, play a crucial role in the transformation of carbon, nitrogen, phosphorus, and other elements. They are often used as indicators to assess the extent of vegetation restoration in ecologically fragile areas. However, the impacts of vegetation restoration on soil microbial community structure in mining areas at the global scale remains largely unknown. Based on 310 paired observations from 44 papers, we employed the meta-analysis approach to examine the influence of vegetation restoration on soil microbial abundance and biomass in mining area. The results indicated that vegetation restoration significantly promotes soil microbial biomass in mining areas. In comparison to bare soil, vegetation restoration leads to a significant 95.1% increase in soil microbial biomass carbon and a 87.8% increase in soil microbial biomass nitrogen. The abundance of soil bacteria, fungi, and actinomycetes are significantly increased by 1005.4%, 472.4%, and 177.7%, respectively. Among various vegetation restoration types, the exclusive plan-ting of trees exhibits the most pronounced promotion effect on soil microbial biomass and population, which results in a significant increase of 540.3% in soil fungi and 104.5% in actinomycetes, along with a respective enhancement of 110.3% and 106.4% in microbial biomass carbon and nitrogen. Model selection results revealed that soil satura-ted water content and vegetation restoration history contribute most significantly to the abundance of soil bacteria and fungi. Soil available nitrogen has the most significant impact on the abundance of actinomycetes and microbial biomass carbon, while soil available phosphorus emerges as a crucial factor affecting microbial biomass nitrogen. This research could contribute to understanding the relationship between vegetation restoration and the structure of soil microbial communities in mining areas, and providing scientific support for determining appropriate vegetation restoration types in mining areas.


Assuntos
Ecossistema , Mineração , Microbiologia do Solo , China , Recuperação e Remediação Ambiental/métodos , Solo/química , Árvores/crescimento & desenvolvimento , Nitrogênio/análise , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biomassa , Plantas , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA