Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 16: 6167-6178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111686

RESUMO

Venous thromboembolism is a condition that includes deep vein thrombosis and pulmonary embolism. It is the third most common cardiovascular disease behind acute coronary heart disease and stroke. Over the past few years, growing research suggests that venous thrombosis is also related to the immune system and inflammatory factors have been confirmed to be involved in venous thrombosis. The role of inflammation and inflammation-related biomarkers in cerebrovascular thrombotic disease is the subject of ongoing debate. P-selectin leads to platelet-monocyte aggregation and stimulates vascular inflammation and thrombosis. The dysregulation of miRNAs has also been reported in venous thrombosis, suggesting the involvement of miRNAs in the progression of venous thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is a crucial component of the plasminogen-plasmin system, and elevated levels of PAI-1 in conjunction with advanced age are significant risk factors for thrombosis. In addition, it has been showed that one of the ways that neutrophils promote venous thrombosis is the formation of neutrophil extracellular traps (NETs). In recent years, the role of extracellular vesicles (EVs) in the occurrence and development of VTE has been continuously revealed. With the advancement of research technology, the complex regulatory role of EVs on the coagulation process has been gradually discovered. However, our understanding of the causes and consequences of these changes in venous thrombosis is still limited. Therefore, we review our current understanding the molecular mechanisms of venous thrombosis and the related clinical trials, which is crucial for the future treatment of venous thrombosis.

2.
Front Genet ; 12: 691391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306031

RESUMO

Hepatocellular carcinoma (HCC), one of the most common and lethal tumors worldwide, is usually not diagnosed until the disease is advanced, which results in ineffective intervention and unfavorable prognosis. Small molecule targeted drugs of HCC, such as sorafenib, provided only about 2.8 months of survival benefit, partially due to cancer stem cell resistance. There is an urgent need for the development of new treatment strategies for HCC. Tumor immunotherapies, including immune check point inhibitors, chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAb), have shown significant potential. It is known that the expression level of glypican-3 (GPC3) was significantly increased in HCC compared with normal liver tissues. A bispecific antibody (GPC3-S-Fabs) was reported to recruit NK cells to target GPC3 positive cancer cells. Besides, bispecific T-cell Engagers (BiTE), including GPC3/CD3, an aptamer TLS11a/CD3 and EpCAM/CD3, were recently reported to efficiently eliminate HCC cells. It is known that immune checkpoint proteins programmed death-1 (PD-1) binding by programmed cell death-ligand 1 (PD-L1) activates immune checkpoints of T cells. Anti-PD-1 antibody was reported to suppress HCC progression. Furthermore, GPC3-based HCC immunotherapy has been shown to be a curative approach to prolong the survival time of patients with HCC in clinically trials. Besides, the vascular endothelial growth factor (VEGF) inhibitor may inhibit the migration, invasion and angiogenesis of HCC. Here we review the cutting-edge progresses on mechanisms and clinical trials of HCC immunotherapy, which may have significant implication in our understanding of HCC and its immunotherapy.

3.
Adv Sci (Weinh) ; 8(9): 2003410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977048

RESUMO

Atherosclerosis is a chronic inflammatory disease that can cause acute cardiovascular events. Activation of the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome enhances atherogenesis, which links lipid metabolism to sterile inflammation. This study examines the impact of an endogenous metabolite, namely ketone body 3-hydroxybutyrate (3-HB), on a mouse model of atherosclerosis. It is found that daily oral administration of 3-HB can significantly ameliorate atherosclerosis. Mechanistically, 3-HB is found to reduce the M1 macrophage proportion and promote cholesterol efflux by acting on macrophages through its receptor G-protein-coupled receptor 109a (Gpr109a). 3-HB-Gpr109a signaling promotes extracellular calcium (Ca2+) influx. The elevation of intracellular Ca2+ level reduces the release of Ca2+ from the endothelium reticulum (ER) to mitochondria, thus inhibits ER stress triggered by ER Ca2+ store depletion. As NLRP3 inflammasome can be activated by ER stress, 3-HB can inhibit the activation of NLRP3 inflammasome, which triggers the increase of M1 macrophage proportion and the inhibition of cholesterol efflux. It is concluded that daily nutritional supplementation of 3-HB attenuates atherosclerosis in mice.


Assuntos
Ácido 3-Hidroxibutírico/uso terapêutico , Aterosclerose/tratamento farmacológico , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Corpos Cetônicos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos
4.
Nat Commun ; 12(1): 1411, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658500

RESUMO

Genetically programmed circuits allowing bifunctional dynamic regulation of enzyme expression have far-reaching significances for various bio-manufactural purposes. However, building a bio-switch with a post log-phase response and reversibility during scale-up bioprocesses is still a challenge in metabolic engineering due to the lack of robustness. Here, we report a robust thermosensitive bio-switch that enables stringent bidirectional control of gene expression over time and levels in living cells. Based on the bio-switch, we obtain tree ring-like colonies with spatially distributed patterns and transformer cells shifting among spherical-, rod- and fiber-shapes of the engineered Escherichia coli. Moreover, fed-batch fermentations of recombinant E. coli are conducted to obtain ordered assembly of tailor-made biopolymers polyhydroxyalkanoates including diblock- and random-copolymer, composed of 3-hydroxybutyrate and 4-hydroxybutyrate with controllable monomer molar fraction. This study demonstrates the possibility of well-organized, chemosynthesis-like block polymerization on a molecular scale by reprogrammed microbes, exemplifying the versatility of thermo-response control for various practical uses.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fermentação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidroxibutiratos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microrganismos Geneticamente Modificados , Poliésteres/metabolismo , Temperatura , Imagem com Lapso de Tempo , Proteína Vermelha Fluorescente
5.
Biotechnol J ; 14(9): e1800437, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30927495

RESUMO

The chemical industry has made a contribution to modern society by providing cost-competitive products for our daily use. However, it now faces a serious challenge regarding environmental pollutions and greenhouse gas emission. With the rapid development of molecular biology, biochemistry, and synthetic biology, industrial biotechnology has evolved to become more efficient for production of chemicals and materials. However, in contrast to chemical industries, current industrial biotechnology (CIB) is still not competitive for production of chemicals, materials, and biofuels due to their low efficiency and complicated sterilization processes as well as high-energy consumption. It must be further developed into "next-generation industrial biotechnology" (NGIB), which is low-cost mixed substrates based on less freshwater consumption, energy-saving, and long-lasting open continuous intelligent processing, overcoming the shortcomings of CIB and transforming the CIB into competitive processes. Contamination-resistant microorganism as chassis is the key to a successful NGIB, which requires resistance to microbial or phage contaminations, and available tools and methods for metabolic or synthetic biology engineering. This review proposes a list of contamination-resistant bacteria and takes Halomonas spp. as an example for the production of a variety of products, including polyhydroxyalkanoates under open- and continuous-processing conditions proposed for NGIB.


Assuntos
Biotecnologia/métodos , Biologia Sintética/métodos , Fermentação/fisiologia , Halomonas/metabolismo , Poli-Hidroxialcanoatos/metabolismo
6.
Plant Sci ; 263: 168-176, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818372

RESUMO

Histone recognition is important for understanding the mechanisms of histone modification, which play a pivotal role in transcriptional regulation during plant development. Here, we identified three cysteine-tryptophan (CW)-domain containing zinc finger (ZF) proteins involved in histone recognition, namely OsCW-ZF3, OsCW-ZF5 and OsCW-ZF7. Protein sequence analysis showed that they have two unknown motifs in addition to the CW domain. All three OsCW-ZFs were expressed in aerial tissues, with relatively high levels in developing panicles. Subcellular localization revealed that the OsCW-ZFs target the cell nucleus and CW domains are not necessary for their nuclear localization. In contrast to OsCW-ZF3 and OsCW-ZF5 where the CW domains bind histone H3 lysine 4 with different methylated forms (H3K4me), the CW domain from OsCW-ZF7 recognizes only trimethylated histone H3 lysine 4 (H3K4me3). Analysis of mutant suggested that three conserved tryptophan residues in the CW domain are essential for binding to H3K4me. Further study found that OsCW-ZF7 interacts with TAFII20, a transcription initiation factor TFIID 20kDa subunit. Knockout of OsCW-ZF7 caused defective development of awns. This study provides new insights into our understanding of the CW domain and lays a foundation for further investigation of its roles in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Metilação de DNA , Código das Histonas , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Alinhamento de Sequência , Dedos de Zinco/genética
7.
Plant Sci ; 249: 35-45, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27297988

RESUMO

Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism.


Assuntos
Hidroxiesteroide Desidrogenases/fisiologia , Metabolismo dos Lipídeos/genética , Oryza/metabolismo , Proteínas de Plantas/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Oryza/enzimologia , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Sci ; 236: 18-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025517

RESUMO

Boron (B) is essential for plant growth, and B deficiency causes severe losses in crop yield. Here we isolated and characterized a rice (Oryza sativa L.) mutant named dwarf and tiller-enhancing 1 (dte1), which exhibits defects under low-B conditions, including retarded growth, increased number of tillers and impaired pollen fertility. Map-based cloning revealed that dte1 encodes a NOD26-LIKE INTRINSIC PROTEIN orthologous to known B channel proteins AtNIP5;1 in Arabidopsis and TASSEL-LESS1 in maize. Its identity was verified by transgenic complementation and RNA-interference. Subcellular localization showed DTE1 is mainly localized in the plasma membrane. The accumulation of DTE1 transcripts both in roots and shoots significantly increased within 3h of the onset of B starvation, but decreased within 1h of B replenishment. GUS staining indicated that DTE1s are expressed abundantly in exodermal cells in roots, as well as in nodal region of adult leaves. Although the dte1 mutation apparently reduces the total B content in plants, it does not affect in vivo B concentrations under B-deficient conditions. These data provide evidence that DTE1 is critical for vegetative growth and reproductive development in rice grown under B-deficient conditions.


Assuntos
Boro/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Mutação , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
9.
Plant Foods Hum Nutr ; 69(4): 379-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25432789

RESUMO

Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants.


Assuntos
Ácido Fólico/genética , Alimentos Fortificados , Alimentos Geneticamente Modificados , Genes de Plantas , Oryza/genética , Plantas Geneticamente Modificadas , Sementes/metabolismo , Dieta , Ácido Fólico/biossíntese , Deficiência de Ácido Fólico/dietoterapia , Humanos , Oryza/enzimologia , Oryza/metabolismo , Transaminases/genética , Transgenes , Complexo Vitamínico B/biossíntese , Complexo Vitamínico B/genética
10.
J Exp Bot ; 65(18): 5317-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25005137

RESUMO

A dominant suppressor of the ABAR overexpressor, soar1-1D, from CHLH/ABAR [coding for Mg-chelatase H subunit/putative abscisic acid (ABA) receptor (ABAR)] overexpression lines was screened to explore the mechanism of the ABAR-mediated ABA signalling. The SOAR1 gene encodes a pentatricopeptide repeat (PPR) protein which localizes to both the cytosol and nucleus. Down-regulation of SOAR1 strongly enhances, but up-regulation of SOAR1 almost completely impairs, ABA responses, revealing that SOAR1 is a critical, negative, regulator of ABA signalling. Further genetic evidence supports that SOAR1 functions downstream of ABAR and probably upstream of an ABA-responsive transcription factor ABI5. Changes in the SOAR1 expression alter expression of a subset of ABA-responsive genes including ABI5. These findings provide important information to elucidate further the functional mechanism of PPR proteins and the complicated ABA signalling network.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinação/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia
11.
Plant J ; 78(3): 468-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24635058

RESUMO

Low temperature (LT) is one of the most prevalent factors limiting the productivity and geographical distribution of rice (Oryza sativa L.). Although significant progress has been made in elucidating the effect of LT on seed germination and reproductive development in rice, the genetic component affecting vegetative growth under LT remains poorly understood. Here, we report that rice cultivars harboring the dominant LTG1 (Low Temperature Growth 1) allele are more tolerant to LT (15-25°C, a temperature range prevalent in high-altitude, temperate zones and high-latitude areas), than those with the ltg1 allele. Using a map-based cloning strategy, we show that LTG1 encodes a casein kinase I. A functional nucleotide polymorphism was identified in the coding region of LTG1, causing a single amino acid substitution (I357K) that is associated with the growth rate, heading date and yield of rice plants grown at LT. We present evidence that LTG1 affects rice growth at LT via an auxin-dependent process(es). Furthermore, phylogenetic analysis of this locus suggests that the ltg1 haplotype arose before the domestication of rice in tropical climates. Together, our data demonstrate that LTG1 plays an important role in the adaptive growth and fitness of rice cultivars under conditions of low ambient temperature.


Assuntos
Adaptação Fisiológica , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Alelos , Substituição de Aminoácidos , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Clonagem Molecular , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Haplótipos , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polimorfismo Genético
12.
Plant Physiol ; 162(4): 1867-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23803583

RESUMO

The plastidic caseinolytic protease (Clp) of higher plants is an evolutionarily conserved protein degradation apparatus composed of a proteolytic core complex (the P and R rings) and a set of accessory proteins (ClpT, ClpC, and ClpS). The role and molecular composition of Clps in higher plants has just begun to be unraveled, mostly from studies with the model dicotyledonous plant Arabidopsis (Arabidopsis thaliana). In this work, we isolated a virescent yellow leaf (vyl) mutant in rice (Oryza sativa), which produces chlorotic leaves throughout the entire growth period. The young chlorotic leaves turn green in later developmental stages, accompanied by alterations in chlorophyll accumulation, chloroplast ultrastructure, and the expression of chloroplast development- and photosynthesis-related genes. Positional cloning revealed that the VYL gene encodes a protein homologous to the Arabidopsis ClpP6 subunit and that it is targeted to the chloroplast. VYL expression is constitutive in most tissues examined but most abundant in leaf sections containing chloroplasts in early stages of development. The mutation in vyl causes premature termination of the predicted gene product and loss of the conserved catalytic triad (serine-histidine-aspartate) and the polypeptide-binding site of VYL. Using a tandem affinity purification approach and mass spectrometry analysis, we identified OsClpP4 as a VYL-associated protein in vivo. In addition, yeast two-hybrid assays demonstrated that VYL directly interacts with OsClpP3 and OsClpP4. Furthermore, we found that OsClpP3 directly interacts with OsClpT, that OsClpP4 directly interacts with OsClpP5 and OsClpT, and that both OsClpP4 and OsClpT can homodimerize. Together, our data provide new insights into the function, assembly, and regulation of Clps in higher plants.


Assuntos
Endopeptidase Clp/genética , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Plastídeos/enzimologia , Sítios de Ligação , Clorofila/genética , Clorofila/metabolismo , Cloroplastos/genética , Clonagem Molecular , Endopeptidase Clp/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fenótipo , Fotossíntese/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
13.
Plant Physiol ; 159(1): 227-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22430843

RESUMO

The pentatricopeptide repeat (PPR) gene family represents one of the largest gene families in higher plants. Accumulating data suggest that PPR proteins play a central and broad role in modulating the expression of organellar genes in plants. Here we report a rice (Oryza sativa) mutant named young seedling albino (ysa) derived from the rice thermo/photoperiod-sensitive genic male-sterile line Pei'ai64S, which is a leading male-sterile line for commercial two-line hybrid rice production. The ysa mutant develops albino leaves before the three-leaf stage, but the mutant gradually turns green and recovers to normal green at the six-leaf stage. Further investigation showed that the change in leaf color in ysa mutant is associated with changes in chlorophyll content and chloroplast development. Map-based cloning revealed that YSA encodes a PPR protein with 16 tandem PPR motifs. YSA is highly expressed in young leaves and stems, and its expression level is regulated by light. We showed that the ysa mutation has no apparent negative effects on several important agronomic traits, such as fertility, stigma extrusion rate, selfed seed-setting rate, hybrid seed-setting rate, and yield heterosis under normal growth conditions. We further demonstrated that ysa can be used as an early marker for efficient identification and elimination of false hybrids in commercial hybrid rice production, resulting in yield increases by up to approximately 537 kg ha(-1).


Assuntos
Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plântula/metabolismo , Sementes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores , Quimera/genética , Quimera/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Clonagem Molecular , Cruzamentos Genéticos , Fertilidade , Genes de Plantas , Vigor Híbrido , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Oryza/anatomia & histologia , Oryza/genética , Fotoperíodo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Sementes/genética , Transcrição Gênica
14.
J Integr Plant Biol ; 53(9): 710-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21605340

RESUMO

In rice, one detrimental factor influencing single panicle yield is the frequent occurrence of panicle apical abortion (PAA) under unfavorable climatic conditions. Until now, no detailed genetic information has been available to avoid PAA in rice breeding. Here, we show that the occurrence of PAA is associated with the accumulation of excess hydrogen peroxide. Quantitative trait loci (QTLs) mapping for PAA in an F(2) population derived from the cross of L-05261 (PAA line) × IRAT129 (non-PAA variety) identified seven QTLs over a logarithm of the odd (LOD) threshold of 2.5, explaining approximately 50.1% of phenotypic variance for PAA in total. Five of the QTLs with an increased effect from L-05261, were designated as qPAA3-1, qPAA3-2, qPAA4, qPAA5 and qPAA8, and accounted for 6.8%, 5.9%, 4.2%, 13.0% and 12.2% of phenotypic variance, respectively. We found that the PAA in the early heading plants was mainly controlled by qPAA8. Subsequently, using the sub-populations specific for qPAA8 based on marker-assisted selection, we further narrowed qPAA8 to a 37.6-kb interval delimited by markers RM22475 and 8-In112. These results are beneficial for PAA gene clone.


Assuntos
Genes de Plantas/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Mapeamento Físico do Cromossomo/métodos , Proteínas de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Peróxido de Hidrogênio/metabolismo , Repetições de Microssatélites/genética , Fenótipo , Locos de Características Quantitativas/genética
15.
Plant Cell ; 22(6): 1909-35, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20543028

RESUMO

The phytohormone abscisic acid (ABA) plays a vital role in plant development and response to environmental challenges, but the complex networks of ABA signaling pathways are poorly understood. We previously reported that a chloroplast protein, the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), functions as a receptor for ABA in Arabidopsis thaliana. Here, we report that ABAR spans the chloroplast envelope and that the cytosolic C terminus of ABAR interacts with a group of WRKY transcription factors (WRKY40, WRKY18, and WRKY60) that function as negative regulators of ABA signaling in seed germination and postgermination growth. WRKY40, a central negative regulator, inhibits expression of ABA-responsive genes, such as ABI5. In response to a high level of ABA signal that recruits WRKY40 from the nucleus to the cytosol and promotes ABAR-WRKY40 interaction, ABAR relieves the ABI5 gene of inhibition by repressing WRKY40 expression. These findings describe a unique ABA signaling pathway from the early signaling events to downstream gene expression.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Liases/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Liases/genética , Proteínas de Membrana/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , RNA de Plantas/genética , Transdução de Sinais , Fatores de Transcrição/genética
16.
Plant Physiol ; 150(4): 1940-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19535472

RESUMO

Using a newly developed abscisic acid (ABA)-affinity chromatography technique, we showed that the magnesium-chelatase H subunit ABAR/CHLH (for putative abscisic acid receptor/chelatase H subunit) specifically binds ABA through the C-terminal half but not the N-terminal half. A set of potential agonists/antagonists to ABA, including 2-trans,4-trans-ABA, gibberellin, cytokinin-like regulator 6-benzylaminopurine, auxin indole-3-acetic acid, auxin-like substance naphthalene acetic acid, and jasmonic acid methyl ester, did not bind ABAR/CHLH. A C-terminal C370 truncated ABAR with 369 amino acid residues (631-999) was shown to bind ABA, which may be a core of the ABA-binding domain in the C-terminal half. Consistently, expression of the ABAR/CHLH C-terminal half truncated proteins fused with green fluorescent protein (GFP) in wild-type plants conferred ABA hypersensitivity in all major ABA responses, including seed germination, postgermination growth, and stomatal movement, and the expression of the same truncated proteins fused with GFP in an ABA-insensitive cch mutant of the ABAR/CHLH gene restored the ABA sensitivity of the mutant in all of the ABA responses. However, the effect of expression of the ABAR N-terminal half fused with GFP in the wild-type plants was limited to seedling growth, and the restoring effect of the ABA sensitivity of the cch mutant was limited to seed germination. In addition, we identified two new mutant alleles of ABAR/CHLH from the mutant pool in the Arabidopsis Biological Resource Center via Arabidopsis (Arabidopsis thaliana) Targeting-Induced Local Lesions in Genomes. The abar-2 mutant has a point mutation resulting in the N-terminal Leu-348-->Phe, and the abar-3 mutant has a point mutation resulting in the N-terminal Ser-183-->Phe. The two mutants show altered ABA-related phenotypes in seed germination and postgermination growth but not in stomatal movement. These findings support the idea that ABAR/CHLH is an ABA receptor and reveal that the C-terminal half of ABAR/CHLH plays a central role in ABA signaling, which is consistent with its ABA-binding ability, but the N-terminal half is also functionally required, likely through a regulatory action on the C-terminal half.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , Liases/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cromatografia de Afinidade , DNA Complementar/genética , Germinação/efeitos dos fármacos , Liases/química , Liases/genética , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos
17.
Plant Cell ; 19(10): 3019-36, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17921317

RESUMO

Many biochemical approaches show functions of calcium-dependent protein kinases (CDPKs) in abscisic acid (ABA) signal transduction, but molecular genetic evidence linking defined CDPK genes with ABA-regulated biological functions at the whole-plant level has been lacking. Here, we report that ABA stimulated two homologous CDPKs in Arabidopsis thaliana, CPK4 and CPK11. Loss-of-function mutations of CPK4 and CPK11 resulted in pleiotropic ABA-insensitive phenotypes in seed germination, seedling growth, and stomatal movement and led to salt insensitivity in seed germination and decreased tolerance of seedlings to salt stress. Double mutants of the two CDPK genes had stronger ABA- and salt-responsive phenotypes than the single mutants. CPK4- or CPK11-overexpressing plants generally showed inverse ABA-related phenotypes relative to those of the loss-of-function mutants. Expression levels of many ABA-responsive genes were altered in the loss-of-function mutants and overexpression lines. The CPK4 and CPK11 kinases both phosphorylated two ABA-responsive transcription factors, ABF1 and ABF4, in vitro, suggesting that the two kinases may regulate ABA signaling through these transcription factors. These data provide in planta genetic evidence for the involvement of CDPK/calcium in ABA signaling at the whole-plant level and show that CPK4 and CPK11 are two important positive regulators in CDPK/calcium-mediated ABA signaling pathways.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Germinação/efeitos dos fármacos , Germinação/genética , Immunoblotting , Imunoprecipitação , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia
18.
Plant Mol Biol ; 64(5): 531-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17476573

RESUMO

Calcium is an important second messenger involved in abscisic acid (ABA) signal transduction. Calcium-dependent protein kinases (CDPKs) are the best characterized calcium sensor in plants and are believed to be important components in plant hormone signaling. However, in planta genetic evidence has been lacking to link CDPK with ABA-regulated biological functions. We previously identified an ABA-stimulated CDPK from grape berry, which is potentially involved in ABA signaling. Here we report that heterologous overexpression of ACPK1 in Arabidopsis promotes significantly plant growth and enhances ABA-sensitivity in seed germination, early seedling growth and stomatal movement, providing evidence that ACPK1 is involved in ABA signal transduction as a positive regulator, and suggesting that the ACPK1 gene may be potentially used for elevating plant biomass production.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Quinases/genética , Ácido Abscísico/farmacologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Primers do DNA , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/fisiologia , Cinética , Folhas de Planta/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Nature ; 443(7113): 823-6, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17051210

RESUMO

Abscisic acid (ABA) is a vital phytohormone that regulates mainly stomatal aperture and seed development, but ABA receptors involved in these processes have yet to be determined. We previously identified from broad bean an ABA-binding protein (ABAR) potentially involved in stomatal signalling, the gene for which encodes the H subunit of Mg-chelatase (CHLH), which is a key component in both chlorophyll biosynthesis and plastid-to-nucleus signalling. Here we show that Arabidopsis ABAR/CHLH specifically binds ABA, and mediates ABA signalling as a positive regulator in seed germination, post-germination growth and stomatal movement, showing that ABAR/CHLH is an ABA receptor. We show also that ABAR/CHLH is a ubiquitous protein expressed in both green and non-green tissues, indicating that it might be able to perceive the ABA signal at the whole-plant level.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Liases/química , Liases/metabolismo , Subunidades Proteicas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Liases/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Ligação Proteica , Subunidades Proteicas/genética , Transdução de Sinais , Especificidade por Substrato
20.
Zhonghua Liu Xing Bing Xue Za Zhi ; 27(4): 288-92, 2006 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-16875528

RESUMO

OBJECTIVE: To ascertain the causation of a pregnant woman with undefined pneumonia reported from the People's Hospital of Tongling city in Anhui province on November 2005. METHODS: Epidemiological and clinical information of the case was collected from the keypersons close to the case and referring to the medical record. A medical observation was carried out on the close contacts of the case and sick or dead poultry. Tracheal aspirates being collected were tested by both RT-PCR and real-time PCR to detect viral nucleic acids of A/H5N1, and were inoculated into special pathogen free (SPF) embryonated hens' eggs. RESULTS: The pregnant woman was found to have been contacted with the sick/dead poultry directly on the 4th day before onset of illness. All the 122 close contacts were healthy after a 10-day medical observation. The major clinical features of the case were viral pneumonia with rapidly developed leukopenia and lymphopenia. The progress to acute respiratory distress syndrome and multiple organ dysfunction syndromes was found at clinical presentation. HA and NA gene of A/H5N1 virus were positive. The 8 gene fragments of A/Anhui/1/2005 (H5N1) isolated from the tracheal aspirates had not carried genes from a human virus through reassortment, and the receptor-binding site of the hemagglutinin was polybasic cleavage site. CONCLUSION: This was the first documented case of H5N1 infection in pregnant woman. The immunotolerant state of pregnancy might have predisposed to the fatal outcome of the patient.


Assuntos
Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Humana/patologia , Pneumonia/virologia , Complicações Infecciosas na Gravidez/virologia , Adulto , China , Evolução Fatal , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/complicações , Insuficiência de Múltiplos Órgãos , Reação em Cadeia da Polimerase , Gravidez , Síndrome do Desconforto Respiratório , Traqueia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA