Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286372

RESUMO

Viral respiratory infections are major human health concerns. The most striking epidemic disease, COVID-19 is still on going with the emergence of fast mutations and drug resistance of pathogens. A few polysaccharide macromolecules from traditional Chinese medicine (TCM) have been found to have direct anti-SARS-CoV-2 activity but the mechanism remains unclear. In this study, we evaluated the entry inhibition effect of Lycium barbarum polysaccharides (LBP) in vitro and in vivo. We found LBP effectively suppressed multiple SARS-CoV-2 variants entry and protected K18-hACE2 mice from invasion with Omicron pseudovirus (PsV). Moreover, we found LBP interfered with early entry events during infection in time-of-addition (TOA) assay and SEM observation. Further surface plasmon resonance (SPR) study revealed the dual binding of LBP with Spike protein and ACE2, which resulted in the disruption of Spike-ACE2 interaction and subsequently triggered membrane fusion. Therefore, LBP may act as broad-spectrum inhibitors of virus entry and nasal mucosal protective agent against newly emerging respiratory viruses, especially SARS-CoV-2.


Assuntos
COVID-19 , Lycium , Humanos , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA