Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(17): 12625-12634, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35947769

RESUMO

Regeneration of spent V2O5-WO3/TiO2 catalysts is highly desirable, especially for those containing hypertoxic As, which is categorized as hazardous waste. However, common solution-leaching methods suffer from the trade-off between As removal and V2O5 retention, and it would be necessary to introduce extra proceedings like ingredients reimplantation and As-bearing waste treatment after regeneration. Herein, a formic acid-mediated regeneration strategy has been developed to achieve superior catalytic activity, short timescale regeneration, and nontoxic metallic As recycling with controllable and safe conduction. The specific activity of the optimal regenerated catalyst reaches 98.3% of the fresh catalyst with 99.1% As removal and less than 1.8% V loss within 15 min. Structure characterizations reveal that the distorted VOx molecular structure, surface acidity, and redox property recover to the fresh level after regeneration. In situ investigation of the regeneration process indicates that As-OH removal together with V-OH generation occurs at the first regeneration stage, followed by the active center V═O sites over-reduction at the second stage. The retained V═O species by suitable regeneration temperature and time are essential for NH3-selective catalytic reduction (SCR) since As existence and VOx over-reduction will separately cause unstable and excessive NH3 adsorption to further suppress the reaction cycle. The developed strategy and improved understanding of active site protection would exert benefits on the development of efficient and time-saving regeneration methods for spent catalysts.


Assuntos
Venenos , Amônia/química , Catálise , Formiatos , Titânio/química
2.
J Chem Phys ; 146(16): 165101, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456209

RESUMO

We investigate the spin-polarized electron transport through a quantum ring whose arms are embedded by one protein-like single-helical molecule and one quantum dot, respectively. It is found that the inter-arm quantum interference leads to the enhancement of the spin polarization in this structure. Moreover, when local magnetic flux is applied through the ring, the spin polarization in the electron transport process, including the polarization strength and direction, can be further adjusted. Next in the finite-bias case, the spin polarization is also apparent and can be tuned by changing the magnetic flux or the dot level. This work provides a new scheme to manipulate the spin transport based on the single-helical molecule.


Assuntos
Proteínas/química , Transporte de Elétrons , Magnetismo , Modelos Químicos , Estrutura Secundária de Proteína , Teoria Quântica , Marcadores de Spin , Relação Estrutura-Atividade
3.
Sci Rep ; 6: 28311, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324426

RESUMO

We investigate the Josephson effects in the junction formed by the indirect coupling between DIII-class topological and s-wave superconductors via an embedded quantum dot. Due to the presence of two kinds of superconductors, three dot-superconductor coupling manners are considered, respectively. As a result, the Josephson current is found to oscillate in period 2π. More importantly, the presence of Majorana doublet in the DIII-class superconductor renders the current finite at the case of zero phase difference, with its sign determined by the fermion parity of such a junction. In addition, the dot-superconductor coupling plays a nontrivial role in adjusting the Josephson current. When the s-wave superconductor couples to the dot in the weak limit, the current direction will have an opportunity to reverse. It is believed that these results will be helpful for understanding the transport properties of the DIII-class superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA