RESUMO
This study investigated the effects of foxtail millet sourdough fermentation time (0, 8, 16, and 24 h) on the protein structural properties, thermomechanical, fermentation, dynamic rheological, starch granules crystalline regions molecular mobility, and starch microstructural characteristics. The fermentation led to a significant increase in the concentration of free amino acids from protein hydrolysis. Fourier transform infrared spectroscopy (FTIR) revealed changes in protein secondary structure and the presence of functional groups of different bioactive compounds. The result of thermomechanical properties showed a significant increase in the stability (0.70-0.79 min) and anti-retrogradation ability (2.29-3.14 Nm) of lactic acid bacteria (LAB) sourdough compared to the control dough, showing a wider processing applicability with radar profiler index. In contrast, sourdoughs with lower tan δ values had higher elasticity and strength. Scanning electron microscopy showed that the surface of the starch appeared from smooth to uneven with patchy shapes and cavities, which declined the crystallinity from 34.00 % to 21.57 %, 23.64 %, 25.09 %, and 26.34 % respectively. Fermentation changed the To, Tp, Tc, and ΔH of the starch. The results of the study will have great potential for application in the whole grain sourdough industry.
Assuntos
Fermentação , Amido , Amido/química , Amido/metabolismo , Setaria (Planta)/química , Setaria (Planta)/metabolismo , Grão Comestível/química , Grão Comestível/microbiologia , Pão/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Farinha/microbiologia , ReologiaRESUMO
Cisplatin is a metal platinum complex commonly used in the field of anti-tumor and one of the most commonly used drugs in combination chemotherapy. However, chemotherapy with Cisplatin induced overexpression of cyclooxygenase-2 (COX-2) protein in tumor cells, which could impair the therapeutic effect of chemotherapy on tumor progression. Here, we presented a novel method for the treatment of ovarian cancer with a self-assembly based nano-system. Cisplatin and tolfenamic acid were each linked to linoleic acid to give them the ability to self-assemble into nanoparticles in water. TPNPs had flexible drug ratio adjustability, homogeneous stability, and high drug loading capacity. Compared with Cisplatin, TPNPs could promote cellular uptake and tumor aggregation, co-induce enhanced apoptosis and tumor growth inhibition by inhibiting COX-2 in the mice xenograft model of human ovarian cancer, and reduce systemic toxicity. Therefore, TPNPs is a promising antitumor drug as a kind of self-assembly nano-prodrug with high drug load.