Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 872: 162238, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36804985

RESUMO

In search of the candidate for animal feed and clean energy, a new vision of algal biorefinery was firstly proposed to coproduce amino acids and biohythane via hydrothermal treatment and two-stage anaerobic fermentation. This study focused on the comprehensive analysis of amino acids recovered from Chlorella sp. and the subsequent biohythane production from microalgal residues. The content and recovery rate of amino acids were in the range of 2.07-27.62 g/100 g and 3.65 %-48.66 % with increasing temperature due to more cell wall disruptions. Furthermore, it was rich in essential amino acids for livestock, including leucine, arginine, isoleucine, valine and phenylalanine. A comparable hydrogen production (9 mL/g volatile solids (VS)) was reached at 70 °C and 90 °C, while it reduced to 5.84 mL/gVS at 150 °C. The group at 70 °C got the maximum methane generation of 311.9 mL/gVS, which was 16.67 %, 24.94 %, 38.38 % and 46.49 % higher than that of other groups. Microalgal residues at lower temperature contained more organics, which was the reason for the better biohythane production. The coproduction of amino acids and biohythane at 130 °C was favorable, which led to 43.71 % amino acids recovery and 93.82 mL biohythane production from per gVS of Chlorella sp. The improved microalgal biorefinery could provide an alternative way to mitigate the crisis of food and energy, but animal experimentations and techno-economic assessments should be considered for further study.


Assuntos
Chlorella , Microalgas , Anaerobiose , Microalgas/metabolismo , Aminoácidos/metabolismo , Chlorella/metabolismo , Fermentação , Metano , Biocombustíveis , Hidrogênio/metabolismo , Biomassa
2.
Sci Total Environ ; 853: 158327, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36037891

RESUMO

This study investigated and evaluated the roles of acidic (pH 4.0), neutral (pH 7.0) and alkaline (pH 10.0) in anaerobic co-fermentation of sewage sludge and carbohydrate-type municipal waste. CO2, CH4 and H2 are produced in acidic, neutral and alkaline fermentation, respectively. The neutral co-fermentation contained the vast number of aqueous metabolites as total of 22.12 g/L, with the advantage of over 50 % biodegradable components in extracellular polymeric substance and over 80 % hydrolysis rate. Acidic and alkaline pH facilitated ammonia release, with the max concentration of 0.46 g/L and 0.44 g/L, respectively. Microbial analysis indicated that pH is the key parameter to impact microbial activity and drive microbial community transition. The high abundance of Lactobacillus, Bifidobacterium and Clostridium was associated with harvest of ethanol, lactic acid and acetate in acidic, neutral and alkaline fermentation. Meanwhile, the floc feature showed better dewaterability (zeta potential -8.48 mV) and poor nutrient convey (distribution spread index 1.03) in acidic fermentation. In summary, acidic and alkaline fermentation were prioritised for targeted spectrum. Neutral fermentation was prioritised for high production. This study presented an upgraded understanding of the pH role in fermentation performance, microbial structure and sludge behaviour, which benefits the development of fermentation processing unit.


Assuntos
Amônia , Esgotos , Esgotos/microbiologia , Fermentação , Anaerobiose , Amônia/análise , Matriz Extracelular de Substâncias Poliméricas/química , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis/análise , Ácidos , Carboidratos , Ácido Láctico , Etanol , Reatores Biológicos/microbiologia
3.
Bioresour Technol ; 332: 125119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33848821

RESUMO

Microbial stability and evolution are a critical aspect for biosensors, especially in detecting dynamic and emerging anaerobic biohythane production. In this study, two upflow air-cathode chamber microbial fuel cells (UMFCs) were developed for in situ monitoring of the biohydrogen and biomethane reactors under a COD range of 1000-6000 mg/L and 150-1000 mg/L, respectively. Illumina MiSeq sequencing evidenced the dramatic shift of dominant microbial communities in UMFCs from hydrolytic and acidification bacteria (Clostridiaceae_1, Ruminococcaceae, Peptostreptococcaceae) to acetate-oxidizing bacteria (Synergistaceae, Dysgonomonadaceae, Spirochaetaceae). In addition, exoelectroactive bacteria evaluated from Enterobacteriaceae and Burkholderiaceae to Desulfovibrionaceae and Propionibacteriaceae. Especially, Hydrogenotrophic methanogens (Methanobacteriaceae) were abundant at 93.41% in UMFC (for monitoring hydrogen reactor), which was speculated to be a major metabolic pathway for methane production. Principal component analysis revealed a similarity in microbial structure between UMFCs and methane bioreactors. Microbial network analysis suggested a more stable community structure of UMFCs with 205 days' operation.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Methanobacteriaceae , Consórcios Microbianos
4.
Bioresour Technol ; 289: 121746, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323709

RESUMO

This study focused on the effect of hydrothermal treatment (HTT) on biochemical methane potential (BMP) of Chlorella sp. The BMP was in the range of 119.16-485.90 mLCH4/gVS, and increased by 80.31%-210.16% after HTT, while reduced 23.94% at hydrothermal treatment severity (HTS) 5.21. The cell wall was more greatly disrupted with increasing HTS, accompanied with the increase of volatile fatty acids (VFAs) and fermentation inhibitors (5-HMF and more complex chemical compositions) recoveries. The reducing sugar yields were 0.94-3.65% and obtained its maximum at a retention time of 30 min. Illumina MiSeq sequencing clarified that, the phylum Chloroflexi with functions of hydrolysis and acidogenesis, decreased with increasing HTS. The family Methanosaetaceae belonging to acetoclastic methanogens, had an unexpected decrease at HTS 5.21. As the response, VFAs concentration was less than 1 g/L after biochemical metabolism, while high concentrations of VFAs and inhibitors at HTS 5.21 led to the poor performance.


Assuntos
Chlorella/metabolismo , Metano/metabolismo , Fenômenos Bioquímicos , Metabolismo dos Carboidratos , Carboidratos , Ácidos Graxos Voláteis/biossíntese , Hidrólise
5.
Bioresour Technol ; 218: 731-6, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27420161

RESUMO

A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h.


Assuntos
Biocombustíveis , Temperatura Alta , Metano/biossíntese , Zea mays/química , Zea mays/metabolismo , Anaerobiose , Biocombustíveis/análise , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA