Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1221718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601688

RESUMO

Introduction: Circulating tumor DNA (ctDNA) detection postoperatively may identify patients with urothelial cancer at a high risk of relapse. Pragmatic tools building off clinical tumor next-generation sequencing (NGS) platforms could have the potential to increase assay accessibility. Methods: We evaluated the widely available Foundation Medicine comprehensive genomic profiling (CGP) platform as a source of variants for tracking of ctDNA when analyzing residual samples from IMvigor010 (ClinicalTrials.gov identifier NCT02450331), a randomized adjuvant study comparing atezolizumab with observation after bladder cancer surgery. Current methods often involve germline sampling, which is not always feasible or practical. Rather than performing white blood cell sequencing to filter germline and clonal hematopoiesis (CH) variants, we applied a bioinformatic approach to select tumor (non-germline/CH) variants for molecular residual disease detection. Tissue-informed personalized multiplex polymerase chain reaction-NGS assay was used to detect ctDNA postsurgically (Natera). Results: Across 396 analyzed patients, prevalence of potentially actionable alterations was comparable with the expected prevalence in advanced disease (13% FGFR2/3, 20% PIK3CA, 13% ERBB2, and 37% with elevated tumor mutational burden ≥10 mutations/megabase). In the observation arm, 66 of the 184 (36%) ctDNA-positive patients had shorter disease-free survival [DFS; hazard ratio (HR) = 5.77; 95% confidence interval (CI), 3.84-8.67; P < 0.0001] and overall survival (OS; HR = 5.81; 95% CI, 3.41-9.91; P < 0.0001) compared with ctDNA-negative patients. ctDNA-positive patients had improved DFS and OS with atezolizumab compared with those in observation (DFS HR = 0.56; 95% CI, 0.38-0.83; P = 0.003; OS HR = 0.66; 95% CI, 0.42-1.05). Clinical sensitivity and specificity for detection of postsurgical recurrence were 58% (60/103) and 93% (75/81), respectively. Conclusion: We present a personalized ctDNA monitoring assay utilizing tissue-based FoundationOne® CDx CGP, which is a pragmatic and potentially clinically scalable method that can detect low levels of residual ctDNA in patients with resected, muscle-invasive bladder cancer without germline sampling.

2.
Nat Cancer ; 3(10): 1181-1191, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36253484

RESUMO

Talazoparib, a PARP inhibitor, is active in germline BRCA1 and BRCA2 (gBRCA1/2)-mutant advanced breast cancer, but its activity beyond gBRCA1/2 is poorly understood. We conducted Talazoparib Beyond BRCA ( NCT02401347 ), an open-label phase II trial, to evaluate talazoparib in patients with pretreated advanced HER2-negative breast cancer (n = 13) or other solid tumors (n = 7) with mutations in homologous recombination (HR) pathway genes other than BRCA1 and BRCA2. In patients with breast cancer, four patients had a Response Evaluation Criteria in Solid Tumors (RECIST) partial response (overall response rate, 31%), and three additional patients had stable disease of ≥6 months (clinical benefit rate, 54%). All patients with germline mutations in PALB2 (gPALB2; encoding partner and localizer of BRCA2) had treatment-associated tumor regression. Tumor or plasma circulating tumor DNA (ctDNA) HR deficiency (HRD) scores were correlated with treatment outcomes and were increased in all gPALB2 tumors. In addition, a gPALB2-associated mutational signature was associated with tumor response. Thus, talazoparib has been demonstrated to have efficacy in patients with advanced breast cancer who have gPALB2 mutations, showing activity in the context of HR pathway gene mutations beyond gBRCA1/2.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Recombinação Homóloga , Neoplasias da Mama/tratamento farmacológico , Mutação , Proteína BRCA1/genética , Proteína BRCA2/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232827

RESUMO

A majority of patients with metastatic colorectal cancer (mCRC) experience recurrence post curative-intent surgery. The addition of adjuvant chemotherapy has shown to provide limited survival benefits when applied to all patients. Therefore, a biomarker to assess molecular residual disease (MRD) accurately and guide treatment selection is highly desirable for high-risk patients. This feasibility study evaluated the prognostic value of a tissue comprehensive genomic profiling (CGP)-informed, personalized circulating tumor DNA (ctDNA) assay (FoundationOne®Tracker) (Foundation Medicine, Inc., Cambridge, MA, USA) by correlating MRD status with clinical outcomes. ctDNA analysis was performed retrospectively on plasma samples from 69 patients with resected mCRC obtained at the MRD and the follow-up time point. Tissue CGP identified potentially actionable alterations in 54% (37/69) of patients. MRD-positivity was significantly associated with lower disease-free survival (DFS) (HR: 4.97, 95% CI: 2.67−9.24, p < 0.0001) and overall survival (OS) (HR: 27.05, 95% CI: 3.60−203.46, p < 0.0001). Similarly, ctDNA positive status at the follow-up time point correlated with a marked reduction in DFS (HR: 8.78, 95% CI: 3.59−21.49, p < 0.0001) and OS (HR: 20.06, 95% CI: 2.51−160.25, p < 0.0001). The overall sensitivity and specificity at the follow-up time point were 69% and 100%, respectively. Our results indicate that MRD detection using the tissue CGP-informed ctDNA assay is prognostic of survival outcomes in patients with resected mCRC. The concurrent MRD detection and identification of actionable alterations has the potential to guide perioperative clinical decision-making.


Assuntos
DNA Tumoral Circulante , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Progressão da Doença , Genômica , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/patologia , Estudos Retrospectivos
4.
JCO Precis Oncol ; 6: e2200148, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36170624

RESUMO

PURPOSE: Detection of circulating tumor DNA (ctDNA) after neoadjuvant chemotherapy in patients with early-stage breast cancer may allow for early detection of relapse. In this study, we analyzed ctDNA using a personalized, tumor-informed multiplex polymerase chain reaction-based next-generation sequencing assay. METHODS: Plasma samples (n = 157) from 44 patients were collected before neoadjuvant therapy (baseline), after neoadjuvant therapy and before surgery (presurgery), and serially postsurgery including a last follow-up sample. The primary end point was event-free survival (EFS) analyzed using Cox regression models. RESULTS: Thirty-eight (86%), 41 (93%), and 38 (86%) patients had baseline, presurgical, and last follow-up samples, respectively. Twenty patients had hormone receptor-positive/human epidermal growth factor receptor 2-negative, 13 had triple-negative breast cancer, and 11 had human epidermal growth factor receptor 2-positive disease. Baseline ctDNA detection was observed in 22/38 (58%) patients and was significantly associated with Ki67 > 20% (P = .036) and MYC copy-number gain (P = .0025, false discovery rate = 0.036). ctDNA detection at presurgery and at last follow-up was observed in 2/41 (5%) and 2/38 (5%) patients, respectively. Eight relapses (seven distant and one local) were noted (median follow-up 3.03 years [range, 0.39-5.85 years]). After adjusting for pathologic complete response (pCR), ctDNA detection at presurgery and at last follow-up was associated with shorter EFS (hazard ratio [HR], 53; 95% CI, 4.5 to 624; P < .01, and HR, 31; 95% CI, 2.7 to 352; P < .01, respectively). Association between baseline detection and EFS was not observed (HR, 1.4; 95% CI, 0.3 to 5.9; P = .67). CONCLUSION: The presence of ctDNA after neoadjuvant chemotherapy is associated with relapse in early-stage breast cancer, supporting interventional trials for testing the clinical utility of ctDNA monitoring in this setting.


Assuntos
DNA Tumoral Circulante , Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Humanos , Antígeno Ki-67 , Terapia Neoadjuvante , Recidiva Local de Neoplasia/genética
5.
Gynecol Oncol ; 167(2): 334-341, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36117009

RESUMO

OBJECTIVE: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. We examined the utility of circulating tumor DNA (ctDNA) as a prognostic biomarker for EOC by assessing its relationship with patient outcome and CA-125, pre-surgically and during post-treatment surveillance. METHODS: Plasma samples were collected from patients with stage I-IV EOC. Cohort A included patients with pre-surgical samples (N = 44, median follow-up: 2.7 years), cohort B and C included: patients with serially collected post-surgically (N = 12) and, during surveillance (N = 13), respectively (median follow-up: 2 years). Plasma samples were analyzed using a tumor-informed, personalized multiplex-PCR NGS assay; ctDNA status and CA-125 levels were correlated with clinical features and outcomes. RESULTS: Genomic profiling was performed on the entire cohort and was consistent with that seen in TCGA. In cohort A, ctDNA-positivity was observed in 73% (32/44) of presurgical samples and was higher in high nuclear grade disease. In cohort B and C, ctDNA was only detected in patients who relapsed (100% sensitivity and specificity) and preceded radiological findings by an average of 10 months. The presence of ctDNA at a single timepoint after completion of surgery +/- adjuvant chemotherapy and serially during surveillance was a strong predictor of relapse (HR:17.6, p = 0.001 and p < 0.0001, respectively), while CA-125 positivity was not (p = 0.113 and p = 0.056). CONCLUSIONS: The presence of ctDNA post-surgically is highly prognostic of reduced recurrence-free survival. CtDNA outperformed CA-125 in identifying patients at highest risk of recurrence. These results suggest that monitoring ctDNA could be beneficial in clinical decision-making for EOC patients.


Assuntos
DNA Tumoral Circulante , Neoplasias Ovarianas , Humanos , Feminino , DNA Tumoral Circulante/genética , Carcinoma Epitelial do Ovário , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/cirurgia , Biomarcadores Tumorais/genética , Mutação
6.
JAMA Oncol ; 5(8): 1124-1131, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070691

RESUMO

IMPORTANCE: Novel sensitive methods for detection and monitoring of residual disease can improve postoperative risk stratification with implications for patient selection for adjuvant chemotherapy (ACT), ACT duration, intensity of radiologic surveillance, and, ultimately, outcome for patients with colorectal cancer (CRC). OBJECTIVE: To investigate the association of circulating tumor DNA (ctDNA) with recurrence using longitudinal data from ultradeep sequencing of plasma cell-free DNA in patients with CRC before and after surgery, during and after ACT, and during surveillance. DESIGN, SETTING, AND PARTICIPANTS: In this prospective, multicenter cohort study, ctDNA was quantified in the preoperative and postoperative settings of stages I to III CRC by personalized multiplex, polymerase chain reaction-based, next-generation sequencing. The study enrolled 130 patients at the surgical departments of Aarhus University Hospital, Randers Hospital, and Herning Hospital in Denmark from May 1, 2014, to January 31, 2017. Plasma samples (n = 829) were collected before surgery, postoperatively at day 30, and every third month for up to 3 years. MAIN OUTCOMES AND MEASURES: Outcomes were ctDNA measurement, clinical recurrence, and recurrence-free survival. RESULTS: A total of 130 patients with stages I to III CRC (mean [SD] age, 67.9 [10.1] years; 74 [56.9%] male) were enrolled in the study; 5 patients discontinued participation, leaving 125 patients for analysis. Preoperatively, ctDNA was detectable in 108 of 122 patients (88.5%). After definitive treatment, longitudinal ctDNA analysis identified 14 of 16 relapses (87.5%). At postoperative day 30, ctDNA-positive patients were 7 times more likely to relapse than ctDNA-negative patients (hazard ratio [HR], 7.2; 95% CI, 2.7-19.0; P < .001). Similarly, shortly after ACT ctDNA-positive patients were 17 times (HR, 17.5; 95% CI, 5.4-56.5; P < .001) more likely to relapse. All 7 patients who were ctDNA positive after ACT experienced relapse. Monitoring during and after ACT indicated that 3 of the 10 ctDNA-positive patients (30.0%) were cleared by ACT. During surveillance after definitive therapy, ctDNA-positive patients were more than 40 times more likely to experience disease recurrence than ctDNA-negative patients (HR, 43.5; 95% CI, 9.8-193.5 P < .001). In all multivariate analyses, ctDNA status was independently associated with relapse after adjusting for known clinicopathologic risk factors. Serial ctDNA analyses revealed disease recurrence up to 16.5 months ahead of standard-of-care radiologic imaging (mean, 8.7 months; range, 0.8-16.5 months). Actionable mutations were identified in 81.8% of the ctDNA-positive relapse samples. CONCLUSIONS AND RELEVANCE: Circulating tumor DNA analysis can potentially change the postoperative management of CRC by enabling risk stratification, ACT monitoring, and early relapse detection.

7.
J Clin Oncol ; 37(18): 1547-1557, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31059311

RESUMO

PURPOSE: Novel sensitive methods for early detection of relapse and for monitoring therapeutic efficacy may have a huge impact on risk stratification, treatment, and ultimately outcome for patients with bladder cancer. We addressed the prognostic and predictive impact of ultra-deep sequencing of cell-free DNA in patients before and after cystectomy and during chemotherapy. PATIENTS AND METHODS: We included 68 patients with localized advanced bladder cancer. Patient-specific somatic mutations, identified by whole-exome sequencing, were used to assess circulating tumor DNA (ctDNA) by ultra-deep sequencing (median, 105,000×) of plasma DNA. Plasma samples (n = 656) were procured at diagnosis, during chemotherapy, before cystectomy, and during surveillance. Expression profiling was performed for tumor subtype and immune signature analyses. RESULTS: Presence of ctDNA was highly prognostic at diagnosis before chemotherapy (hazard ratio, 29.1; P = .001). After cystectomy, ctDNA analysis correctly identified all patients with metastatic relapse during disease monitoring (100% sensitivity, 98% specificity). A median lead time over radiographic imaging of 96 days was observed. In addition, for high-risk patients (ctDNA positive before or during treatment), the dynamics of ctDNA during chemotherapy was associated with disease recurrence (P = .023), whereas pathologic downstaging was not. Analysis of tumor-centric biomarkers showed that mutational processes (signature 5) were associated with pathologic downstaging (P = .024); however, no significant correlation for tumor subtypes, DNA damage response mutations, and other biomarkers was observed. Our results suggest that ctDNA analysis is better associated with treatment efficacy compared with other available methods. CONCLUSION: ctDNA assessment for early risk stratification, therapy monitoring, and early relapse detection in bladder cancer is feasible and provides a basis for clinical studies that evaluate early therapeutic interventions.


Assuntos
Ácidos Nucleicos Livres/sangue , Detecção Precoce de Câncer , Feminino , Humanos , Estudos Longitudinais , Masculino , Metástase Neoplásica , Recidiva Local de Neoplasia , Prognóstico , Recidiva , Neoplasias da Bexiga Urinária/patologia
8.
Clin Cancer Res ; 25(14): 4255-4263, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30992300

RESUMO

PURPOSE: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer. EXPERIMENTAL DESIGN: Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n = 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X). RESULTS: Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling. CONCLUSIONS: This study demonstrates that patient-specific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Recidiva Local de Neoplasia/diagnóstico , Medicina de Precisão , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/secundário , DNA Tumoral Circulante/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Estudos Prospectivos
9.
Bioinformatics ; 34(2): 353-360, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29112732

RESUMO

MOTIVATION: Structural variation, including large deletions, duplications, inversions, translocations and other rearrangements, is common in human and cancer genomes. A number of methods have been developed to identify structural variants from Illumina short-read sequencing data. However, reliable identification of structural variants remains challenging because many variants have breakpoints in repetitive regions of the genome and thus are difficult to identify with short reads. The recently developed linked-read sequencing technology from 10X Genomics combines a novel barcoding strategy with Illumina sequencing. This technology labels all reads that originate from a small number (∼5 to 10) DNA molecules ∼50 Kbp in length with the same molecular barcode. These barcoded reads contain long-range sequence information that is advantageous for identification of structural variants. RESULTS: We present Novel Adjacency Identification with Barcoded Reads (NAIBR), an algorithm to identify structural variants in linked-read sequencing data. NAIBR predicts novel adjacencies in an individual genome resulting from structural variants using a probabilistic model that combines multiple signals in barcoded reads. We show that NAIBR outperforms several existing methods for structural variant identification-including two recent methods that also analyze linked-reads-on simulated sequencing data and 10X whole-genome sequencing data from the NA12878 human genome and the HCC1954 breast cancer cell line. Several of the novel somatic structural variants identified in HCC1954 overlap known cancer genes. AVAILABILITY AND IMPLEMENTATION: Software is available at compbio.cs.brown.edu/software. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Opt Express ; 25(4): 4312-4325, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241635

RESUMO

We demonstrate how to optimize the performance of PAM-4 transmitters based on lumped Silicon Photonic Mach-Zehnder Modulators (MZMs) for short-reach optical links. Firstly, we analyze the trade-off that occurs between extinction ratio and modulation loss when driving an MZM with a voltage swing less than the MZM's Vπ. This is important when driver circuits are realized in deep submicron CMOS process nodes. Next, a driving scheme based upon a switched capacitor approach is proposed to maximize the achievable bandwidth of the combined lumped MZM and CMOS driver chip. This scheme allows the use of lumped MZM for high speed optical links with reduced RF driver power consumption compared to the conventional approach of driving MZMs (with transmission line based electrodes) with a power amplifier. This is critical for upcoming short-reach link standards such as 400Gb/s 802.3 Ethernet. The driver chip was fabricated using a 65nm CMOS technology and flip-chipped on top of the Silicon Photonic chip (fabricated using IMEC's ISIPP25G technology) that contains the MZM. Open eyes with 4dB extinction ratio for a 36Gb/s (18Gbaud) PAM-4 signal are experimentally demonstrated. The electronic driver chip has a core area of only 0.11mm2 and consumes 236mW from 1.2V and 2.4V supply voltages. This corresponds to an energy efficiency of 6.55pJ/bit including Gray encoder and retiming, or 5.37pJ/bit for the driver circuit only.

13.
Cancer Cell ; 29(5): 723-736, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27165744

RESUMO

We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Genoma Humano/genética , Genômica/métodos , Adolescente , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/terapia , Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Metilação de DNA , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Avaliação de Resultados em Cuidados de Saúde , Prognóstico , Adulto Jovem
15.
Genome Biol ; 16: 160, 2015 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-26253137

RESUMO

Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes.


Assuntos
Algoritmos , Neoplasias/genética , Interpretação Estatística de Dados , Genes Neoplásicos , Humanos , Mutação
17.
Nat Genet ; 47(2): 106-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501392

RESUMO

Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Genoma/genética , Neoplasias/genética , Transdução de Sinais/genética , Bases de Dados Genéticas , Humanos , Complexos Multiproteicos/genética , Mutação , Neoplasias/diagnóstico
18.
Bioinformatics ; 30(12): i195-203, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24931984

RESUMO

MOTIVATION: Somatic copy number aberrations SCNAS: are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNA: s makes the problem of identifying recurrent aberrations notoriously difficult. RESULTS: We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNA: s, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNA: s as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. AVAILABILITY: http://compbio.cs.brown.edu/software.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Humanos , Neoplasias/genética
19.
PLoS One ; 9(4): e94476, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732363

RESUMO

The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Apoptose/genética , Proliferação de Células , Análise por Conglomerados , Variações do Número de Cópias de DNA/genética , Feminino , Genes Neoplásicos , Humanos , Metástase Neoplásica , Omento/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
PLoS One ; 8(3): e58226, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554878

RESUMO

Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2-4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Neoplasias Ovarianas/metabolismo , RNA Neoplásico/biossíntese , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA