Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(3): 947-957, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38197180

RESUMO

The construction of a new electrochemical sensing platform based on a copper metal-organic framework (Cu-MOF) heterostructure is described in this paper. Drop-casting Cu-MOF suspension onto the electrode surface primed the sensor for glutathione detection. The composition and morphology of the Cu-MOF heterostructure were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The Cu-MOF heterostructure can identify glutathione (GSH) with an enhanced sensitivity of 0.0437 µA µM-1 at the detection limit (LOD; 0.1 ± 0.005 µM) and a large dynamic range of 0.1-20 µM. Boosting the conductivity and surface area enhances electron transport and promotes redox processes. The constructed sensors were also adequately selective against interference from other contaminants in a similar potential window. Furthermore, the Cu-MOF heterostructure has outstanding selectivity, long-term stability, and repeatability, and the given sensors have demonstrated their capacity to detect GSH with high accuracy (recovery range = 98.2-100.8%) in pharmaceutical samples.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Cobre/química , Estruturas Metalorgânicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Preparações Farmacêuticas , Técnicas Eletroquímicas
2.
Molecules ; 28(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067644

RESUMO

Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.


Assuntos
Praguicidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Praguicidas/análise , Monitoramento Ambiental
3.
Materials (Basel) ; 16(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004995

RESUMO

Super-sensitive malathion detection was achieved using a nonenzymatic electrochemical sensor based on a CuO/ZnO-modified glassy carbon electrode (GCE). Due to the high affinity between the Cu element and the sulfur groups in malathion, the developed CuO-ZnO/GCE sensor may bond malathion with ease, inhibiting the redox signal of the Cu element when malathion is present. In addition to significantly increasing the ability of electron transfer, the addition of 3D-flower-like ZnO enhances active sites of the sensor interface for the high affinity of malathion, giving the CuO-ZnO/GCE composite an exceptional level of sensitivity and selectivity. This enzyme-free CuO-ZnO/GCE malathion sensor demonstrates outstanding stability and excellent detection performance under optimal operating conditions with a wide linear range of malathion from 0 to 200 nM and a low detection limit of 1.367 nM. A promising alternative technique for organophosphorus pesticide (OP) determination is offered by the analytical performance of the proposed sensor, and this method can be quickly and sensitively applied to samples that have been contaminated with these pesticides.

4.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513259

RESUMO

Carbon materials with elusive 0D, 1D, 2D, and 3D nanostructures and high surface area provide certain emerging applications in electrocatalytic and photocatalytic CO2 utilization. Since carbon possesses high electrical conductivity, it expels the photogenerated electrons from the catalytic surface and can tune the photocatalytic activity in the visible-light region. However, the photocatalytic efficiency of pristine carbon is comparatively low due to the high recombination of photogenerated carriers. Thus, supporting carbon materials, such as graphene, CNTs (Carbon nanotubes), g-C3N4, MWCNs (Multiwall carbon nanotubes), conducting polymers, and its other simpler forms like activated carbon, nanofibers, nanosheets, and nanoparticles, are usually combined with other metal and non-metal nanocomposites to increase the CO2 absorption and conversion. In addition, carbon-based materials with transition metals and organometallic complexes are also commonly used as photocatalysts for CO2 reduction. This review focuses on developing efficient carbon-based nanomaterials for the photoconversion of CO2 into solar fuels. It is concluded that MWCNs are one of the most used materials as supporting materials for CO2 reduction. Due to the multi-layered morphology, multiple reflections will occur within the layers, thus enhancing light harvesting. In particular, stacked nanostructured hollow sphere morphologies can also help the metal doping from corroding.

5.
Chemosphere ; 310: 136865, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244422

RESUMO

Castor cake is a major by-product generated after castor oil extraction and has been widely used as an organic fertilizer. Once applied to soil, a toxic alkaloid ricinine in castor cake may be released into soils and subsequently taken up by crops, which poses a potential threat to food safety and human health. However, the environmental fate of castor cake derived ricinine in agroecosystems remains unclear. In this study, the release and metabolism of ricinine in soils were conducted using soil pot experiments with different castor cake application rates. The analytical methodology of ricinine quantification in soil pore water was first established using solid phase extraction (SPE) coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A non-target screening workflow associated with LC-QTOF/MS and SIRIUS platform was further developed to identify ricinine metabolites in soil pore water. After castor cake application, the ricinine concentrations in soil pore water significantly increased to 297-7990 µg L-1 at 1 day and then gradually decreased to 62.1-3460 µg L-1 at 7 days and 1.70-279 µg L-1 at 14 days for the selected two tested soils with castor cake application rates of 2, 10, and 20 g castor cake/kg soil. In addition, two ricinine metabolites R-194 and R-180 were tentatively identified and one ricinine metabolite N-demethyl-ricinin was confirmed through authentic reference standard for the first time by the developed non-target screening workflow. This study highlights the release and metabolism of toxic alkaloid ricinine in soils once applied castor cake as an organic fertilizer. Ricinine could be released into soil pore water in a short-term after castor cake application and then undergo demethylation, hydroxylation, and hydroxylation followed by methylation metabolisms over time in agroecosystems.


Assuntos
Alcaloides , Fertilizantes , Humanos , Fertilizantes/análise , Solo , Óleo de Rícino , Fluxo de Trabalho , Cromatografia Líquida , Alcaloides/análise , Espectrometria de Massas , Água/análise
6.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432216

RESUMO

Heavy metals are one of the most important classes of environmental pollutants which are toxic to living beings. Many efforts are made by scientists to fabricate better sensors for the identification and quantification of heavy metal ions (HMI) in water and food samples to ensure good health. Electrocatalysts have been demonstrated to play an important role in enhancing the sensitivity and selectivity of HMI detection in electrochemical sensors. In this review, we presented morphologically well-tuned nanomaterials used as efficient sensor materials. Based on the molecular dimensions, shapes, and orientation, nanomaterials can be classified into 0-D, 1-D, 2-D, and 3-D nanomaterials. Active surface areas with significant exposure of active sites and adsorption-desorption abilities are extensively varied with dimensionality, which in turn ultimately influence the sensing performance for HMI.

7.
Nanomaterials (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947731

RESUMO

Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core-shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 µmol g-1 h-1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron-hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials.

8.
Ultrason Sonochem ; 80: 105824, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763211

RESUMO

To harvest the photon energy, a sequenceof perovskite-type oxides of LaCoxFe1-xO3 (0 ≤x≤1) nanostructures with distinct 'Cobalt' doping at the position of B-site are successfully prepared via a simple ultrasonic approach as photocatalyst. The crystallinity, phase identification, microstructure, and morphology of perovskite nanocomposites were analyzed to better understand their physicochemical properties. The catalytic efficiency was assessedusing Congo Red (CR) dye by visible light irradiation for 30 min. Applying terephthalic acid as a probe molecule, the formation of hydroxyl radicals during the processes was investigated. The photocatalytic efficacy was measured by varying different Co/Fe stoichiometric molar ratios and noticed the order of sequence is 0.2 > 0.6 > 0.4 > 0.8 > 0.5 > 0 > 1 after 30 min of reaction time. Finally using LaCo0.2Fe0.8O3 nanostructures, cycling studies (n = 3) were performed to determine its photostability and reusability. The photocatalytic methodology proposed in this study was discussed extensively.

9.
Environ Technol ; : 1-11, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34057402

RESUMO

Polymers are highly promising materials for capturing carbon dioxide (CO2), a greenhouse gas. Hence in this work, we prepared phyllosilicate supported mesoporous polymer via reversible addition-fragmentation chain transfer (RAFT) polymerisation, which is the one among the controlled radical polymerisation. The mesoporous material anchored on dodecanethiol trithiocarbonate acts as a chain transfer agent (CTA) for the polymerisation of chloromethyl styrene and further conversion to quaternary ammonium compound which is effective to trap CO2 using tertiary amine. The synthesised porous phyllosilicate/polymer nanocomposites have been characterised by using various analytical tools. The CO2 sorption experiments were carried out by passing CO2 onto the synthesised porous phyllosilicate/polymer nanocomposites. The sorption kinetics was monitored by X-Ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) spectra in the presence of carbonate were obtained by reaction of quaternary ammonium hydroxide and CO2. The phyllosilicate anchored macromolecular CTA (macro-CTA) and the surface-initiated polymer nanocomposites encompassed apparent surface areas of 94.5 and 26.8 m2 g-1, respectively. In addition, the total pore volumes calculated for the macro-CTA and polymer were found to be 0.27 and 0.095 cm3g-1, while the average pore sizes were 14.24 and 11.46 nm, respectively. The CO2 sorption capacity of the phyllosilicate/polymer nanocomposites, monitored at different temperatures, is the fastest for 25°C but slower for the sample treated at 50°C which may due to the dipole and quadrupole interaction.

10.
ACS Omega ; 5(13): 7201-7210, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280860

RESUMO

In this work, hydrophilic polymers modified with iron oxide nanoparticles, such as iron oxide-poly(2-dimethylaminoethyl methacrylate) [P(DMAEMA)] magnetite-based and iron oxide-poly(acrylamide) [P(AAm)] magnetite-based polymers, were prepared via a single electron transfer-living radical polymerization approach. Bile acid and 2-bromo-2-methylpropionic acid were covalently attached onto the surface of Fe3O4 nanoparticles, and these immobilized magnetite nanoparticles were used as an initiator for the polymerization. The binding capabilities of different ions, such as Hg2+, CN-, Cl-, F-, and NO3 -, were tested using these polymeric sensors monitored by UV-vis spectroscopy. Magnetite-based P(DMAEMA) showed enhanced binding capability due to the presence of tertiary amine groups. In addition, it was possible to easily separate the bound ions from aqueous media using an external magnetic field.

11.
Nanomaterials (Basel) ; 10(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164266

RESUMO

Copper-doped bismuth vanadate/graphitic carbon nitride (BiVO4/g-C3N4) nanocomposite materials were successfully fabricated using a sonochemical approach. Cu-doped BiVO4/g-C3N4 nanocomposite photocatalysts could improve electron/hole (e-/h+) pair separation, stability, and light-harvesting efficiency compared to pristine BiVO4 or g-C3N4, resulting in the enhancement of photocatalytic activity. The optimal parameters, such as pH value at 10, photocatalyst dosage of 0.4 g L-1, and 10 mol% Cu-doped BiVO4/g-C3N4 photocatalyst, were determined to degrade initial concentration of 20 ppm Bisphenol A, which could be completely removed after 90 min. Furthermore, the excessive doping of copper (> 10 mol%) could not synthesize the pure monoclinic scheelite phase, which substantially resulted in the reduction of the photocatalytic activity.

12.
Nanomaterials (Basel) ; 10(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155885

RESUMO

Tremendous efforts have been made on the development of unique electrochemical capacitors or pseudocapacitors due to the overgrowing electrical energy demand. Here, the authors report a new and simple strategy for fabricating hybrid MnOx-coated ZnO nanorod arrays. First, the vertically aligned ZnO nanorods were prepared by chemical bath deposition (CBD) as a template providing a large surface area for active material deposition. The manganese oxide was subsequently coated onto the surface of the ZnO nanorods to form a hybrid MnOx-coated ZnO nanostructure by anodic deposition in a manganese acetate (MnA)-containing aqueous solution. The hybrid structure of MnOx-coated ZnO nanorod arrays exhibits a large surface area and high conductivity, essential for enhancing the faradaic processes across the interface and improving redox reactions at active MnOx sites. A certain concentration of the deposition solution was selected for the MnOx coating, which was studied as a function of deposition time. Cyclic voltammetry (CV) curves showed that the specific capacitance (SC) of the MnOx-coated ZnO nanostructure was 222 F/g for the deposition times at 10 s when the concentration of MnA solution was 0.25 M. The unique hybrid nanostructures also exhibit excellent cycling stability with >97.5% capacitance retention after 1200 CV cycles. The proposed simple and cost-effective method of fabricating hybrid nanostructures may pave the way for mass production of future intelligent and efficient electrochemical energy storage devices.

13.
Environ Sci Pollut Res Int ; 27(15): 17438-17445, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31119545

RESUMO

In this study, copper oxide nanorods were synthesized via surfactant-assisted chemical precipitation method and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and UV-Visible spectrometer. XRD result reveals that CuO nanorods were structured in the monoclinic phase. SEM image suggested that synthesized CuO were shaped like nanorod with approximately 20-40 nm width and 500-800 nm length. The observed band gap calculated from UV-Visible absorption studies is 1.45 eV. As-prepared CuO nanorods were applied as a photocatalyst for the degradation of textile dye Reactive Black 5 (RB-5) in aqueous solution under the presence of visible light. The result exhibited that an enhanced degradation of RB-5 was achieved around 98% within 300 min and the experimental values were well matched with the linear fit model (R2 = 0.97) and the observed rate constant found to be 5 × 10-3 min-1. Therefore, as-synthesized CuO nanorods can be applied as a potential photocatalyst material for the degradation of organic pollutants in the wastewater.


Assuntos
Nanotubos , Águas Residuárias , Catálise , Cobre , Naftalenossulfonatos , Óxidos , Tensoativos
14.
Phys Chem Chem Phys ; 21(45): 25474-25483, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31714567

RESUMO

Expensive Pt counter electrodes remain an obstacle for the commercialization of dye-sensitized solar cells (DSSCs). Therefore, research focusing on low-cost alternative counter electrode materials has been considered important for their commercialization. Here, the fabrication of dye-sensitized solar cells has been performed utilizing CoS2 and MoS2 coated CoS2 nanocomposite materials as the counter electrode, which are synthesized via a hydrothermal route involving low-cost precursor materials. The experimental results obtained from XRD, XPS, EDX, SEM, TEM, and Raman etc. have confirmed the successful formation of CoS2 and MoS2 coated CoS2 nanocomposites. The electrochemical characterization of these materials is performed, which suggests that the electrocatalytic activity towards the liquid iodine electrolyte of these materials is as good as that of the conventional Pt counter electrodes. So, dye-sensitized solar cell devices are fabricated by interpolating a (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(ii)) dye-loaded TiO2 photoanode and CoS2, MoS2 coated CoS2 and Pt counter electrodes using iodine/iodide as a liquid electrolyte. The devices fabricated with CoS2 counter electrodes have shown an open circuit voltage of 790 mV, a short circuit current of 11.9 mA cm-2, a fill factor of 0.54, and a power conversion efficiency of 6%. On the other hand, the device based on a Pt counter electrode has shown an open circuit voltage of 773 mV, a short circuit current of 13.4 mA cm-2, a fill factor of 0.54, and a power conversion efficiency of 6.6%. In addition, MoS2 coated with a CoS2 counter electrode has shown the best performance with an open circuit voltage of 763 mV, a short circuit current of 20.1 mA cm-2, a fill factor of 0.42, and a power conversion efficiency of 7.6%.

15.
Polymers (Basel) ; 11(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960168

RESUMO

A polyaniline (PANI)/tin oxide (SnO2) composite for a CO sensor was fabricated using a composite film composed of SnO2 nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO2 nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (<75 °C). The excellent sensor response was mainly attributed to the relatively good properties of PANI in the redox reaction during sensing, which produced a great resistance difference between the air and CO gas at low operating temperature. Therefore, the combination of n-type SnO2 nanoparticles with a high surface area and a thick film of conductive PANI is an effective strategy to design a high-performance CO gas sensor.

16.
ACS Appl Mater Interfaces ; 11(10): 10028-10041, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30746935

RESUMO

This work suggests a modest hydrothermal method applied for the synthesis of oxygen-deficient WO x ( x = 2.75, 2.83, and 2.94) nanomaterials with various morphologies, such as bundled nanorods (NR), nanobelts (NB), and nanosheets (NS), by changing the inorganic additives, such as HCl, NaHSO4, and HNO3. In addition, WO x-supported high- and low-index faceted Pd nanoparticles (Pd-WO2.75 NB, Pd-WO2.83 NR, and Pd-WO2.94 NS) have been successfully synthesized by a facile sonochemical method to enhance the high electrocatalytic activity of electrocatalysts for alcohol electrooxidation, including ethanol, ethylene glycol, and glycerol. Among the three different electrocatalysts, the versatile high-index {520} faceted Pd nanoparticles on WO2.75 NB (Pd-WO2.75 NB) show better electrocatalytic performance compared to low-index {100} faceted Pd-WO2.83 NR and Pd-WO2.94 NS nanocomposites. This work has identified that the high-density low-coordinated surface atom of Pd strongly interacts with alcohol, which facilitates C-C bond cleavage and may prevent the CO poisoning of nanoparticles. Furthermore, the high concentration of oxygen-deficient nano composites provided additional benefit for the generation of OH species and boosted the electrocatalytic performance of alcohols as well.

17.
Ultrason Sonochem ; 51: 223-229, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30377084

RESUMO

Cu2O@TiO2 heterojunction nanocomposites were prepared via ultrasonic method towards the removal of the environmental pollutant of MO by the visible light photocatalytic approach. The structure of prepared Cu2O@TiO2 heterojunction nanocomposites was analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, photoluminescence spectroscopy, UV-Visible absorption spectroscopy, diffused reflectance spectroscopy. The photocatalytic degradation ability was tested using methyl orange as a model pollutant. From the observed pseudo-first order reaction, it was clear that Cu2O@TiO2 nanocomposites showed enhanced photocatalytic activity (rate = 0.223 s-1). The formation of demethylated methyl orange as an intermediate was identified from HPLC analysis at a retention time of 3.47 min. When doped with Cu2O, the TiO2 preserved the integrity of its structural, revealing the morphology there is no significant changes have been made, favoring photoelectrochemical appliances. In presence of illumination, the photocurrent of Cu2O@TiO2 was 4.5 folds greater than that of TiO2, involving that incorporating with Cu2O extensively enhanced mobility of electron via reducing the recombination rate of electron-hole pairs.

18.
Ultrason Sonochem ; 51: 469-477, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30518501

RESUMO

Here in, we report a simple and facile method to synthesis morphology oriented transition metal (Nickel) doped polyaniline (Ni2+/PANI) by chemical oxidative polymerization with the assistance of ultrasonic irradiation. Physicochemical property of the materials examined through XRD and FT-IR. The morphological feature exposed that the sonochemical assisted Ni2+ doped PANI is differing from the conventional method and it reveals a notable electrochemical property as in the form of specific capacitance (370 F g-1 at 0.5 A g-1) with improved rate capability and sustained cycling performance due to its typical interconnected nano-fibrillar morphology than the other synthesized materials. These intriguing features realized from the properly arranged nanostructure with perfect doping and make as a promising candidate as an electrode material in supercapacitor applications.

19.
J Environ Sci (China) ; 69: 115-124, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941246

RESUMO

CuO nanomaterials were synthesized by a simple solution phase method using cetyltrimethylammonium bromide (CTAB) as a surfactant and their photocatalytic property was determined towards the visible-light assisted degradation of Reactive Black-5 dye. A detailed mechanism for the formation of CuO nanostructures has been proposed. The effect of various experimental parameters such as catalyst amount, dye concentration, pH and oxidizing agent on the dye degradation efficiency was studied. About 87% dye was degraded at pH2 in the presence of CuO nanosheets under visible light. The enhanced photocatalytic activity of CuO nanosheets can be ascribed to good crystallinity, grain size, surface morphology and a strong absorption in the visible region. CuO is found to be a promising catalyst for industrial waste water treatment.


Assuntos
Corantes/química , Cobre/química , Nanoestruturas/química , Poluentes Químicos da Água/química , Compostos Azo/química , Catálise , Luz , Processos Fotoquímicos , Fotólise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
20.
Ultrason Sonochem ; 41: 435-440, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29137772

RESUMO

In this work, a simple sonochemical route was followed to synthesize cobalt stannate (Co2SnO4) nanocubes using stannous and cobalt chlorides as the precursors in alkaline medium at room temperature. The structure, composition and surface morphology of synthesized Co2SnO4 nanocubes have been characterized by using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) indicates that the Co2SnO4 nanocubes are crystalline, single-phase without any impurity phase; the sizes of nanocubes are ∼100 nm. The cyclic voltammetry, galvanostatic charge-discharge cycling test, and electrochemical impedance spectroscopy (EIS) measurements are carried out for the Co2SnO4 nanocubes shows a specific capacitance 237 F g-1 at 0.5 mA cm-2 current density and in 1 M Na2SO4 electrolyte. Co2SnO4 nanocubes exhibit long cycling life with 80% retention of initial capacitance after 2000 cycles and the excellent rate capability at 15 mA cm-2 as much as 70% of that at 0.5 mA cm-2 suggest its potential use for supercapacitor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA