Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Neural Netw ; 175: 106296, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653077

RESUMO

Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous DL-based approaches focused on local shapes and textures in brain sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, and better aggregates features, is easier to optimize, and is more robust to noise, which explains its superiority in theory.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encefalopatias/diagnóstico , Encefalopatias/fisiopatologia , Redes Neurais de Computação , Diagnóstico por Computador/métodos
2.
Schizophr Res ; 267: 422-431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640853

RESUMO

A recently proposed "Hyperfocusing hypothesis" suggests that schizotypy is associated with a more narrow but more intense way of allocating attention. The current study aims to test a vital prediction of this hypothesis in a social context, that schizotypy may be related to greater difficulty overcoming the distracting effects of gaze. This could cause a longer time to respond to targets that are invalidly cued by gaze. The current study tested this prediction in a modified Posner cueing paradigm by using P3 as an indicator for attentional resources. Seventy-four young healthy individuals with different levels of schizotypy were included, they were asked to detect the location of a target that was cued validly or invalidly by the gaze and head orientation. The results revealed that (a) schizotypy is associated with hyperfocusing on gaze direction, leading to greater difficulty overcoming the distracting effect of gaze. The higher the trait-schizotypy score, the more time needed to respond to targets that were invalidly cued by gaze (b) schizotypy is associated with reduced P3 which is directed by social communicative stimuli. The higher the trait-schizotypy score, the smaller the amplitude of P3 (c) the relationship between schizotypal traits and response times of the gaze-invalid condition is fully intermediated by P3. The findings of the current study suggest the P3 component may be a crucial neural mechanism underlying joint attention deficits in schizophrenia.


Assuntos
Atenção , Sinais (Psicologia) , Fixação Ocular , Transtorno da Personalidade Esquizotípica , Humanos , Masculino , Feminino , Adulto Jovem , Transtorno da Personalidade Esquizotípica/fisiopatologia , Atenção/fisiologia , Fixação Ocular/fisiologia , Eletroencefalografia , Adulto , Potenciais Evocados P300/fisiologia , Adolescente , Tempo de Reação/fisiologia , Estimulação Luminosa
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652552

RESUMO

The brain networks for the first (L1) and second (L2) languages are dynamically formed in the bilingual brain. This study delves into the neural mechanisms associated with logographic-logographic bilingualism, where both languages employ visually complex and conceptually rich logographic scripts. Using functional Magnetic Resonance Imaging, we examined the brain activity of Chinese-Japanese bilinguals and Japanese-Chinese bilinguals as they engaged in rhyming tasks with Chinese characters and Japanese Kanji. Results showed that Japanese-Chinese bilinguals processed both languages using common brain areas, demonstrating an assimilation pattern, whereas Chinese-Japanese bilinguals recruited additional neural regions in the left lateral prefrontal cortex for processing Japanese Kanji, reflecting their accommodation to the higher phonological complexity of L2. In addition, Japanese speakers relied more on the phonological processing route, while Chinese speakers favored visual form analysis for both languages, indicating differing neural strategy preferences between the 2 bilingual groups. Moreover, multivariate pattern analysis demonstrated that, despite the considerable neural overlap, each bilingual group formed distinguishable neural representations for each language. These findings highlight the brain's capacity for neural adaptability and specificity when processing complex logographic languages, enriching our understanding of the neural underpinnings supporting bilingual language processing.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Multilinguismo , Humanos , Masculino , Feminino , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Fonética , Leitura , Idioma , Japão
4.
Hum Brain Mapp ; 45(4): e26647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488448

RESUMO

Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.


Assuntos
Doença de Parkinson , Córtex Sensório-Motor , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética , Função Executiva , Mapeamento Encefálico
5.
Exp Brain Res ; 242(4): 809-817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400993

RESUMO

It is well known that information on stimulus orientation plays an important role in sensory processing. However, the neural mechanisms underlying somatosensory orientation perception are poorly understood. Adaptation has been widely used as a tool for examining sensitivity to specific features of sensory stimuli. Using the adaptation paradigm, we measured event-related potentials (ERPs) in response to tactile orientation stimuli presented pseudo-randomly to the right-hand palm in trials with all the same or different orientations. Twenty participants were asked to count the tactile orientation stimuli. The results showed that the adaptation-related N60 component was observed around contralateral central-parietal areas, possibly indicating orientation processing in the somatosensory regions. Conversely, the adaptation-related N120 component was identified bilaterally across hemispheres, suggesting the involvement of the frontoparietal circuitry in further tactile orientation processing. P300 component was found across the whole brain in all conditions and was associated with task demands, such as attention and stimulus counting. These findings help provide an understanding of the mechanisms of tactile orientation processing in the human brain.


Assuntos
Eletroencefalografia , Percepção do Tato , Humanos , Potenciais Evocados/fisiologia , Tato/fisiologia , Encéfalo/fisiologia , Atenção/fisiologia , Percepção do Tato/fisiologia
6.
PNAS Nexus ; 2(9): pgad276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693210

RESUMO

The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives. To characterize the SMN substructures in more detail, we used ultra-high-field functional MRI to delineate a finer-grained cortical parcellation containing 430 parcels that is more homogenous than the state-of-the-art parcellation. We personalized the new parcellation to account for individual differences and identified multiscale individual-specific brain structures. We found that the SMN subnetworks showed distinct resting-state functional connectivity (RSFC) patterns. The Hand subnetwork was central within the SMN and exhibited stronger RSFC with the attention systems than the other subnetworks, whereas the Tongue subnetwork exhibited stronger RSFC with the default systems. This two-fold differentiation was observed in the temporal ordering patterns within the SMN. Furthermore, we characterized how the distinct attention and default streams were carried forward into the functions of the SMN using dynamic causal modeling and identified two behavioral domains associated with this SMN fractionation using meta-analytic tools. Overall, our findings provided important insights into the heterogeneous SMN organization at the system level and suggested that the Hand subnetwork may be preferentially involved in exogenous processes, whereas the Tongue subnetwork may be more important in endogenous processes.

7.
Psychiatry Res ; 328: 115464, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690192

RESUMO

Patients diagnosed with schizophrenia (SZ) exhibit compromised functional connectivity within extensive brain networks. However, the precise development of this impairment during disease progression in the clinical high-risk (CHR) population and their relatives remains unclear. Our study leveraged data from 128 resting electroencephalography (EEG) channels acquired from 30 SZ patients, 21 CHR individuals, 17 unaffected healthy relatives (RSs; those at heightened SZ risk due to family history), and 31 healthy controls (HCs). These data were harnessed to establish functional connectivity patterns. By calculating the geometric distance between EEG sequences, we unveiled local and global nonlinear relationships within the entire brain. The process of dimensionality reduction led to low-dimensional representations, providing insights into high-dimensional EEG data. Our findings indicated that CHR participants exhibited aberrant functional connectivity across hemispheres, whereas RS individuals showcased anomalies primarily concentrated within hemispheres. In the realm of low-dimensional analysis, RS participants' third-dimensional occipital lobe values lay between those of the CHR individuals and HCs, significantly correlating with scale scores. This low-dimensional approach facilitated the visualization of brain states, potentially offering enhanced comprehension of brain structure, function, and early-stage functional impairment, such as occipital visual deficits, in RS individuals before cognitive decline onset.

8.
Cereb Cortex ; 33(19): 10258-10271, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37557911

RESUMO

Performing working memory tasks correctly requires not only the temporary maintenance of information but also the visual-to-motor transformation of information. Although sustained delay-period activity is known to be a mechanism for temporarily maintaining information, the mechanism for information transformation is not well known. An analysis using a population of delay-period activities recorded from prefrontal neurons visualized a gradual change of maintained information from sensory to motor as the delay period progressed. However, the contributions of individual prefrontal neurons to this process are not known. In the present study, we used a version of the delayed-response task, in which monkeys needed to make a saccade 90o clockwise from a visual cue after a 3-s delay, and examined the temporal change in the preferred directions of delay-period activity during the delay period for individual neurons. One group of prefrontal neurons encoded the cue direction by a retinotopic reference frame and either maintained it throughout the delay period or rotated it 90o counterclockwise to adjust visual information to saccade information, whereas other groups of neurons encoded the cue direction by a saccade-based reference frame and rotated it 90o clockwise. The results indicate that visual-to-motor information transformation is achieved by manipulating the reference frame to adjust visual coordinates to motor coordinates.


Assuntos
Memória de Curto Prazo , Desempenho Psicomotor , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos , Tempo de Reação/fisiologia
9.
Brain Sci ; 13(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508924

RESUMO

(1) Background: This study investigates whether audiovisual n-back training leads to training effects on working memory and transfer effects on perceptual processing. (2) Methods: Before and after training, the participants were tested using the audiovisual n-back task (1-, 2-, or 3-back), to detect training effects, and the audiovisual discrimination task, to detect transfer effects. (3) Results: For the training effect, the behavioral results show that training leads to greater accuracy and faster response times. Stronger training gains in accuracy and response time using 3- and 2-back tasks, compared to 1-back, were observed in the training group. Event-related potentials (ERPs) data revealed an enhancement of P300 in the frontal and central regions across all working memory levels after training. Training also led to the enhancement of N200 in the central region in the 3-back condition. For the transfer effect, greater audiovisual integration in the frontal and central regions during the post-test rather than pre-test was observed at an early stage (80-120 ms) in the training group. (4) Conclusion: Our findings provide evidence that audiovisual n-back training enhances neural processes underlying a working memory and demonstrate a positive influence of higher cognitive functions on lower cognitive functions.

10.
Commun Biol ; 6(1): 491, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147471

RESUMO

In neuroimaging research, univariate analysis has always been used to localize "representations" at the microscale, whereas network approaches have been applied to characterize transregional "operations". How are representations and operations linked through dynamic interactions? We developed the variational relevance evaluation (VRE) method to analyze individual task fMRI data, which selects informative voxels during model training to localize the "representation", and quantifies the dynamic contributions of single voxels across the whole-brain to different cognitive functions to characterize the "operation". Using 15 individual fMRI data files for higher visual area localizers, we evaluated the characterization of selected voxel positions of VRE and revealed different object-selective regions functioning in similar dynamics. Using another 15 individual fMRI data files for memory retrieval after offline learning, we found similar task-related regions working in different neural dynamics for tasks with diverse familiarities. VRE demonstrates a promising horizon in individual fMRI research.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Memória , Cognição
11.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671936

RESUMO

Recently, advanced electrodes have been developed, such as semi-dry, dry contact, dry non-contact, and microneedle array electrodes. They can overcome the issues of wet electrodes and maintain high signal quality. However, the variations in these electrodes are still unclear and not explained, and there is still confusion regarding the feasibility of electrodes for different application scenarios. In this review, the physical features and electroencephalogram (EEG) signal performances of these advanced EEG electrodes are introduced in view of the differences in contact between the skin and electrodes. Specifically, contact features, biofeatures, impedance, signal quality, and artifacts are discussed. The application scenarios and prospects of different types of EEG electrodes are also elucidated.


Assuntos
Eletroencefalografia , Pele , Eletroencefalografia/métodos , Impedância Elétrica , Eletrodos , Artefatos
12.
Cereb Cortex ; 33(10): 6282-6290, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36627247

RESUMO

Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50-75 years were included from the Parkinson's Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD.


Assuntos
Conectoma , Doença de Parkinson , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
13.
Hum Brain Mapp ; 44(2): 744-761, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214186

RESUMO

Using group-level functional parcellations and constant-length sliding window analysis, dynamic functional connectivity studies have revealed network-specific impairment and compensation in healthy ageing. However, functional parcellation and dynamic time windows vary across individuals; individual-level ageing-related brain dynamics are uncertain. Here, we performed individual parcellation and individual-length sliding window clustering to characterize ageing-related dynamic network changes. Healthy participants (n = 637, 18-88 years) from the Cambridge Centre for Ageing and Neuroscience dataset were included. An individual seven-network parcellation, varied from group-level parcellation, was mapped for each participant. For each network, strong and weak cognitive brain states were revealed by individual-length sliding window clustering and canonical correlation analysis. The results showed negative linear correlations between age and change ratios of sizes in the default mode, frontoparietal, and salience networks and a positive linear correlation between age and change ratios of size in the limbic network (LN). With increasing age, the occurrence and dwell time of strong states showed inverted U-shaped patterns or a linear decreasing pattern in most networks but showed a linear increasing pattern in the LN. Overall, this study reveals a compensative increase in emotional networks (i.e., the LN) and a decline in cognitive and primary sensory networks in healthy ageing. These findings may provide insights into network-specific and individual-level targeting during neuromodulation in ageing and ageing-related diseases.


Assuntos
Mapeamento Encefálico , Envelhecimento Saudável , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
14.
Cereb Cortex ; 33(9): 5447-5456, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36482789

RESUMO

It has been shown that the functional dependency of the brain exists in both direct and indirect regional relationships. Therefore, it is necessary to map higher-order coupling in brain structure and function to understand brain dynamic. However, how to quantify connections between not directly regions remains unknown to schizophrenia. The word2vec is a common algorithm through create embeddings of words to solve these problems. We apply the node2vec embedding representation to characterize features on each node, their pairwise relationship can give rise to correspondence relationships between brain regions. Then we adopt pearson correlation to quantify the higher-order coupling between structure and function in normal controls and schizophrenia. In addition, we construct direct and indirect connections to quantify the coupling between their respective functional connections. The results showed that higher-order coupling is significantly higher in schizophrenia. Importantly, the anomalous cause of coupling mainly focus on indirect structural connections. The indirect structural connections play an essential role in functional connectivity-structural connectivity (SC-FC) coupling. The similarity between embedded representations capture more subtle network underlying information, our research provides new perspectives for understanding SC-FC coupling. A strong indication that the structural backbone of the brain has an intimate influence on the resting-state functional.


Assuntos
Conectoma , Esquizofrenia , Humanos , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo , Algoritmos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
15.
Emotion ; 23(2): 512-520, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35446057

RESUMO

Cuteness perception is a basic function in social interactions. Most studies focus on the impact of facial elemental features on cuteness ratings, but there are many factors that affect cuteness perception. Spatial frequency (SF) is one of the most important parameters in studies on faces. However, few studies have investigated the impact of SFs on cuteness perception. In this study, 16 images of infant faces with four cuteness levels were selected by a prerating experiment. Using a 7-point Likert scale paradigm, participants were asked to rate the cuteness of infant faces, including one version of broad unfiltered faces and four versions of filtered faces. The results showed that filtered SFs reduced cuteness ratings and that the impact of SFs was related to the cuteness levels of faces. Specifically, faces with low SFs got the lowest cuteness ratings. The ratings of faces with low SFs in neutral cuteness had a greater reduction than that in positive cuteness. In comparison, faces with medium and high SFs obtained relatively high cuteness ratings. However, the ratings in medium SFs were higher than that in high SFs if the cuteness of faces exceeded a certain level. Interestingly, their ratings reduction size increased with the improvement of cuteness levels. These results extend our understanding of the cuteness mechanism from an SF processing perspective. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Face , Percepção , Humanos , Lactente
16.
J Neuroeng Rehabil ; 19(1): 129, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424652

RESUMO

BACKGROUND: Transcranial static magnetic field stimulation (tSMS) using a small and strong neodymium (NdFeB) magnet can temporarily suppress brain functions below the magnet. It is a promising non-invasive brain stimulation modality because of its competitive advantages such as safety, simplicity, and low-cost. However, current tSMS is insufficient to effectively stimulate deep brain areas due to attenuation of the magnetic field with the distance from the magnet. The aim of this study was to develop a brand-new tSMS system for non-invasive deep brain stimulation. METHODS: We designed and fabricated a triple tSMS system with three cylindrical NdFeB magnets placed close to each other. We compared the strength of magnetic field produced by the triple tSMS system with that by the current tSMS. Furthermore, to confirm its function, we stimulated the primary motor area in 17 healthy subjects with the triple tSMS for 20 min and assessed the cortical excitability using the motor evoked potential (MEP) obtained by transcranial magnetic stimulation. RESULTS: Our triple tSMS system produced the magnetic field sufficient for neuromodulation up to 80 mm depth from the magnet surface, which was 30 mm deeper than the current tSMS system. In the stimulation experiment, the triple tSMS significantly reduced the MEP amplitude, demonstrating a successful inhibition of the M1 excitability in healthy subjects. CONCLUSION: Our triple tSMS system has an ability to produce an effective magnetic field in deep areas and to modulate the brain functions. It can be used for non-invasive deep brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Estimulação Magnética Transcraniana , Humanos , Voluntários Saudáveis , Potencial Evocado Motor , Campos Magnéticos
17.
Front Aging Neurosci ; 14: 1045073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408100

RESUMO

Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is a powerful non-invasive tool for qualifying the neurophysiological effects of interventions by recording TMS-induced cortical activation with high temporal resolution and generates reproducible and reliable waves of activity without participant cooperation. Cortical dysfunction contributes to the pathogenesis of the clinical symptoms of Parkinson's disease (PD). Here, we examined changes in cortical activity in patients with PD following multidisciplinary intensive rehabilitation treatment (MIRT). Forty-eight patients with PD received 2 weeks of MIRT. The cortical response was examined following single-pulse TMS over the primary motor cortex by 64-channel EEG, and clinical symptoms were assessed before and after MIRT. TMS-evoked potentials were quantified by the global mean field power, as well as oscillatory power in theta, alpha, beta, and gamma bands, and their clinical correlations were calculated. After MIRT, motor and non-motor symptoms improved in 22 responders, and only non-motor function was enhanced in 26 non-responders. Primary motor cortex stimulation reduced global mean field power amplitudes in responders but not significantly in non-responders. Oscillations exhibited attenuated power in the theta, beta, and gamma bands in responders but only reduced gamma power in non-responders. Associations were observed between beta oscillations and motor function and between gamma oscillations and non-motor symptoms. Our results suggest that motor function enhancement by MIRT may be due to beta oscillatory power modulation and that alterations in cortical plasticity in the primary motor cortex contribute to PD recovery.

18.
IEEE J Biomed Health Inform ; 26(12): 6138-6149, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343004

RESUMO

OBJECTIVE: Brain-computer interfaces (BCIs) have been used in two-dimensional (2D) navigation robotic devices, such as brain-controlled wheelchairs and brain-controlled vehicles. However, contemporary BCI systems are driven by binary selective control. On the one hand, only directional information can be transferred from humans to machines, such as "turn left" or "turn right", which means that the quantified value, such as the radius of gyration, cannot be controlled. In this study, we proposed a spatial gradient BCI controller and corresponding environment coordinator, by which the quantified value of brain commands can be transferred in the form of a 2D vector, improving the flexibility, stability and efficiency of BCIs. METHODS: A horizontal array of steady-state visual stimulation was arranged to excite subject (EEG) signals. Covariance arrays between subjects' electroencephalogram (EEG) and stimulation features were mapped into quantified 2-dimensional vectors. The generated vectors were then inputted into the predictive controller and fused with virtual forces generated by the robot's predictive environment coordinator in the form of vector calculation. The resultant vector was then interpreted into the driving force for the robot, and real-time speed feedback was generated. RESULTS: The proposed SGC controller generated a faster (27.4 s vs. 34.9 s) response for the single-obstacle avoidance task than the selective control approach. In practical multiobstacle tasks, the proposed robot executed 39% faster in the target-reaching tasks than the selective controller and had better robustness in multiobstacle avoidance tasks (average failures significantly dropped from 27% to 4%). SIGNIFICANCE: This research proposes a new form of brain-machine shared control strategy that quantifies brain commands in the form of a 2-D control vector stream rather than selective constant values. Combined with a predictive environment coordinator, the brain-controlled strategy of the robot is optimized and provided with higher flexibility. The proposed controller can be used in brain-controlled 2D navigation devices, such as brain-controlled wheelchairs and vehicles.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Meio Ambiente , Robótica , Robótica/instrumentação , Robótica/métodos , Encéfalo/fisiologia , Eletroencefalografia , Navegação Espacial , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estimulação Luminosa , Fenômenos Biomecânicos , Aprendizagem da Esquiva
19.
Front Aging Neurosci ; 14: 1007954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325188

RESUMO

As older adults experience degenerations in perceptual ability, it is important to gain perception from audiovisual integration. Due to attending to one or more auditory stimuli, performing other tasks is a common challenge for older adults in everyday life. Therefore, it is necessary to probe the effects of auditory attentional load on audiovisual integration in older adults. The present study used event-related potentials (ERPs) and a dual-task paradigm [Go / No-go task + rapid serial auditory presentation (RSAP) task] to investigate the temporal dynamics of audiovisual integration. Behavioral results showed that both older and younger adults responded faster and with higher accuracy to audiovisual stimuli than to either visual or auditory stimuli alone. ERPs revealed weaker audiovisual integration under the no-attentional auditory load condition at the earlier processing stages and, conversely, stronger integration in the late stages. Moreover, audiovisual integration was greater in older adults than in younger adults at the following time intervals: 60-90, 140-210, and 430-530 ms. Notably, only under the low load condition in the time interval of 140-210 ms, we did find that the audiovisual integration of older adults was significantly greater than that of younger adults. These results delineate the temporal dynamics of the interactions with auditory attentional load and audiovisual integration in aging, suggesting that modulation of auditory attentional load affects audiovisual integration, enhancing it in older adults.

20.
Front Aging Neurosci ; 14: 1010060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389066

RESUMO

Audiovisual integration is an essential process that influences speech perception in conversation. However, it is still debated whether older individuals benefit more from audiovisual integration than younger individuals. This ambiguity is likely due to stimulus features, such as stimulus intensity. The purpose of the current study was to explore the effect of aging on audiovisual integration, using event-related potentials (ERPs) at different stimulus intensities. The results showed greater audiovisual integration in older adults at 320-360 ms. Conversely, at 460-500 ms, older adults displayed attenuated audiovisual integration in the frontal, fronto-central, central, and centro-parietal regions compared to younger adults. In addition, we found older adults had greater audiovisual integration at 200-230 ms under the low-intensity condition compared to the high-intensity condition, suggesting inverse effectiveness occurred. However, inverse effectiveness was not found in younger adults. Taken together, the results suggested that there was age-related dissociation in audiovisual integration and inverse effectiveness, indicating that the neural mechanisms underlying audiovisual integration differed between older adults and younger adults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA