Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 5964-5976, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381843

RESUMO

Fluorinated ethers have become promising electrolyte solvent candidates for lithium metal batteries (LMBs) because they are endowed with high oxidative stability and high Coulombic efficiencies of lithium metal stripping/plating. Up to now, most reported fluorinated ether electrolytes are -CF3-based, and the influence of ion solvation in modifying degree of fluorination has not been well-elucidated. In this work, we synthesize a hexacyclic coordinated ether (1-methoxy-3-ethoxypropane, EMP) and its fluorinated ether counterparts with -CH2F (F1EMP), -CHF2 (F2EMP), or -CF3 (F3EMP) as terminal group. With lithium bis(fluorosulfonyl)imide as single salt, the solvation structure, Li-ion transport behavior, lithium deposition kinetics, and high-voltage stability of the electrolytes were systematically studied. Theoretical calculations and spectra reveal the gradually reduced solvating power from nonfluorinated EMP to fully fluorinated F3EMP, which leads to decreased ionic conductivity. In contrast, the weakly solvating fluorinated ethers possess higher Li+ transference number and exchange current density. Overall, partially fluorinated -CHF2 is demonstrated as the desired group. Further full cell testing using high-voltage (4.4 V) and high-loading (3.885 mAh cm-2) LiNi0.8Co0.1Mn0.1O2 cathode demonstrates that F2EMP electrolyte enables 80% capacity retention after 168 cycles under limited Li (50 µm) and lean electrolyte (5 mL Ah-1) conditions and 129 cycles under extremely lean electrolyte (1.8 mL Ah-1) and the anode-free conditions. This work deepens the fundamental understanding on the ion transport and interphase dynamics under various degrees of fluorination and provides a feasible approach toward the design of fluorinated ether electrolytes for practical high-voltage LMBs.

2.
ChemSusChem ; 16(18): e202300590, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37302979

RESUMO

Ether-based electrolytes that are endowed with decent compatibility towards lithium anode have been regarded as promising candidates for constructing energy-dense lithium metal batteries (LMBs), but their applications are hindered by low oxidation stability in conventional salt concentration. Here, we reported that regulating the chelating power and coordination structure can remarkably increase the high-voltage stability of ether-based electrolytes and lifespan of LMBs. Two ether molecules of 1,3-dimethoxypropane (DMP) and 1,3-diethoxypropane (DEP) are designed and synthesized as solvents of electrolytes to replace the traditional ether solvent (1,2-dimethoxyethane, DME). Both computational and spectra reveal that the transition from five- to six-membered chelate solvation structure by adding one methylene on DME results in the formation of weak Li solvates, which increase the reversibility and high-voltage stability in LMBs. Even under lean electrolyte (5 mL Ah-1 ) and low anode to cathode ratio (2.6), the fabricated high-voltage Li||LiNi0.8 Co0.1 Mn0.1 O2 LMBs using electrolyte of 2.30 M Lithiumbisfluorosulfonimide (LiFSI)/DMP still show capacity retention over 90 % after 184 cycles. This work highlights the importance of designing the coordination structures in non-fluorine ether electrolytes for rechargeable batteries.

3.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36615357

RESUMO

The precise adjustment of handedness of helical architectures is important to regulate their functions. Macroscopic chirality inversion has been achieved in organic supramolecular systems by pH, metal ions, solvents, chiral and non-chiral additives, temperature, and light, but rarely in coordination polymers (CPs). In particular, salt-assisted macroscopic chirality inversion has not been reported. In this work, we carried out a systematic investigation on the role of pH and salt in regulating the morphology of CPs based on Gd(NO3)3 and R-(1-phenylethylamino)methylphosphonic acid (R-pempH2). Without extra NO3-, the chirality inversion from the left-handed superhelix R-M to the right-handed superhelix R-P can be achieved by pH modulation from 3.2 to 3.8. The addition of NaNO3 (2.0 eq) at pH 3.8 results in an inversion of chiral sense from R-P to R-M as a pure phase. To our knowledge, this is the first example of salt-assisted macroscopic helical inversion in artificial systems.

4.
Chemistry ; 27(67): 16722-16734, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632663

RESUMO

Helical architectures with controllable helical sense bias have recently attracted considerable interest for mimicking biological helices and developing novel chiral materials. Coordination polymers (CPs), composed of metal ion nodes and organic linkers, are intriguing systems showing tunable structures and functions. However, CPs with helical morphologies have rarely been explored so far. Particularly, chirality inversion through external stimulus has not been achieved in helical CPs. In this work, we carried out an in-depth investigation on the self-assembly of 1D gadolinium(III) phosphonate CPs using GdX3 (X=Cl, Br, I) and Gd(RSO3 ) (R=CH3 , C6 H5 , CF3 ) as metal sources and R-(1-phenylethylamino)methyl phosphonic acid (R-pempH2 ) as ligand. Superhelices were formed by precise control of the interchain interactions through different intercalated anions. Furthermore, the twisting direction of superhelices could be controlled by synergistic effect of anions and pH. This study may provide a new route to fabricate helical nanostructures of CPs with a desirable chiral sense and help understand the inner mechanism of the self-assembly process of macroscopic helical structures of molecular systems.


Assuntos
Nanoestruturas , Polímeros , Ânions , Concentração de Íons de Hidrogênio , Estereoisomerismo
5.
J Am Chem Soc ; 143(42): 17587-17598, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644503

RESUMO

Nanotubular materials have garnered considerable attention since the discovery of carbon nanotubes. Although the layer-to-tube rolling up mechanism has been well recognized in explaining the formation of many inorganic nanotubes, it has not been generally applied to coordination polymers (CPs). To uncover the key factors that determine the rolling-up of layered CPs, we have chosen the Co/R-, S-Xpemp [Xpemp = (4-X-1-phenylethylamino)methylphosphonic acid, X = H, F, Cl, Br] systems and study how the weak interactions influence the formation of layered or tubular structures. Four pairs of homochiral isostructural compounds R-, S-Co(Xpemp)(H2O)2 [X = H (1H), F (2F), Cl (3Cl), Br (4Br)] were obtained with tubular structures. The inclusion of 3,3'-azobipyridine (ABP) guest molecules led to compounds R-, S-[Co(Xpemp)(H2O)2]4·ABP·H2O with layered structures when X was Cl (5Cl) and Br (6Br), but tubular compounds 1H and 2F when X was H and F. Layered structures were also obtained for racemic compounds meso-Co(Xpemp)(H2O)2 [X = F (7F), Cl (8Cl), Br (9Br)] using racemic XpempH2 as the reaction precursor, but not when X = H. A detailed study on R-6Br revealed that layer-to-tube transformation occurred upon removal of ABP under hydrothermal conditions, forming R-4Br with a tubular structure. Similar layer-to-tube conversion did not occur in organic solvents. The results demonstrate that weak interlayer interactions are a prerequisite but not sufficient for the rolling-up of the layers. In the present cases, water also provides a driving force in the layer-to-tube transformation. The experimental results were rationalized by theoretical calculations.

6.
Chem Sci ; 12(38): 12619-12630, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703547

RESUMO

Chiral transcription from the molecular level to the macroscopic level by self-organization has been a topic of considerable interest for mimicking biological systems. Homochiral coordination polymers (CPs) are intriguing systems that can be applied in the construction of artificial helical architectures, but they have scarcely been explored to date. Herein, we propose a new strategy for the generation of superhelices of 1D CPs by introducing flexible cyclohexyl groups on the side chains to simultaneously induce interchain van der Waals interactions and chain misalignment due to conformer interconversion. Superhelices of S- or R-Tb(cyampH)3·3H2O (S-1H, R-1H) [cyampH2 = S- or R-(1-cyclohexylethyl)aminomethylphosphonic acid] were obtained successfully, the formation of which was found to follow a new type of "chain-twist-growth" mechanism that had not been described previously. The design strategy used in this work may open a new and general route to the hierarchical assembly and synthesis of helical CP materials.

7.
Chem Asian J ; 16(11): 1456-1465, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861508

RESUMO

Metal-organic frameworks containing responsive organic linkers are attractive for potential applications in sensors and molecular devices. Herein we report three cobalt(II) phosphonates incorporating responsive dianthracene linkers, namely, Co2 (amp2 H2 )2 (H2 O)4 ⋅ 6H2 O (MDAF-1), Co2 (amp2 )(H2 O)4 ⋅ 2H2 O (MDAF-2) and Co(amp2 H2 ) ⋅ 2H2 O ⋅ 0.5DMF (MDAF-3), where amp2 H4 is pre-photodimerized 9-anthrylmethylphosphonic acid. MDAF-1 shows a layer structure in which dinuclear Co2 (PO3 H)2 units are inter-connected by dianthracene ligands. In MDAF-2 and MDAF-3, inorganic chains of corner-sharing {CoO4 } (or {CoO6 }) and {PO3 C} are cross-linked by dianthracene ligands into 3D frameworks. All compounds underwent thermo-induced phase transitions, first the de-solvation and then the de-dimerization of dianthracene (as well as the release of the remaining solvent molecules for MDAF-2 and -3), associated with magnetic changes. MDAF-1 can be exfoliated into single-layer nanosheets in water which show light-triggered luminescent changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA