Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100918, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600699

RESUMO

Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies have revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated peptide signaling pathway to suppress plant immunity. Over the past three decades, receptors for these four types of sulfated peptides have been identified, all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily. A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors, mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for reference in future studies.

2.
Nat Commun ; 15(1): 2648, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531848

RESUMO

Root tips can sense moisture gradients and grow into environments with higher water potential. This process is called root hydrotropism. Here, we report three closely related receptor-like kinases (RLKs) that play critical roles in root hydrotropism: ALTERED ROOT HYDROTROPIC RESPONSE 1 (ARH1), FEI1, and FEI2. Overexpression of these RLKs strongly reduce root hydrotropism, but corresponding loss-of-function mutants exhibit an increased hydrotropic response in their roots. All these RLKs show polar localization at the plasma membrane regions in root tips. The biosynthesis of the cell wall, cutin, and wax (CCW) is significantly impaired in root tips of arh1-2 fei1-C fei2-C. A series of known CCW mutants also exhibit increased root hydrotropism and reduced osmotic tolerance, similar to the characteristics of the triple mutant. Our results demonstrat that the integrity of the cell wall, cutin, and root cap wax mediate a trade-off between root hydrotropism and osmotic tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Gravitropismo/fisiologia , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Proteínas de Arabidopsis/metabolismo , Água/metabolismo , Parede Celular/metabolismo
3.
Int J Nanomedicine ; 12: 1183-1200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243083

RESUMO

A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)-magnetic nanoparticle (MNP) composite by αvß3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP-DGL-RGD-GX1-DOX nanoparticles (NPs) was ~150-160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP-DGL-RGD-GX1-DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP-DGL-RGD-GX1-DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP-DGL-RGD-GX1-DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP-DGL-RGD-GX1-DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Dendrímeros/química , Diagnóstico Precoce , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas de Magnetita/química , Sondas Moleculares/química , Peptídeos/química , Polilisina/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Citometria de Fluxo , Células Hep G2 , Humanos , Neoplasias Hepáticas/diagnóstico , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Masculino , Camundongos Endogâmicos BALB C , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual/efeitos dos fármacos , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA